STORAGE DEVELOPER CONFERENCE

SD2 Fremont, CA September 12-15, 2022

BY Developers FOR Developers

Data Platform For Endto-End Al Democratization

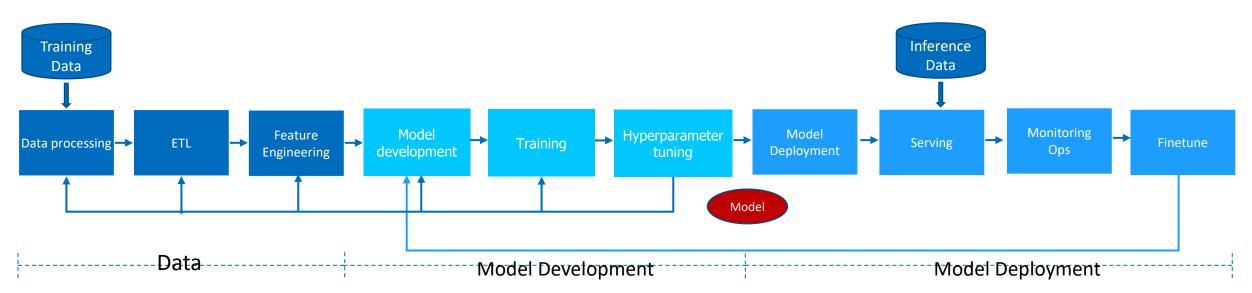
Jack Zhang, System Architect, Intel Jian Zhang, Al software engineering manager, Intel

Agenda

- Backgrounds and motivation
- AI Democratization
- Data Platform for E2E AI democratization
- Intel[®] End-to-End AI Optimization Kit
- Performance results
- Summary

Background and Motivation

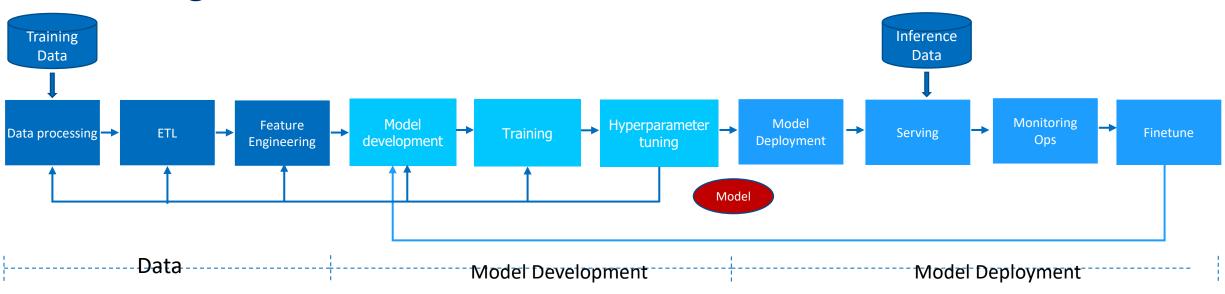
Life cycle of End-to-End Al



E2E AI life cycle

- data processing, feature engineering, training, model serving
- Iterative process single stage might be gone through for several times
- ML code is a small part of real-world AI system
 - A vast-complex pipeline/infrastructure is required for AI to deliver successful predictive results/values

Challenges



	Kafka*, Sqoop*, Flume*, Spark*, Nifi	Spark, Pandas,Numpy Spark Mllib, scikit-learn, XGBoost	Tensorflow, pytorch, Keras, Cafee, MXNet	Serving	MLflow	
challeng es	Data growing at extreme pace – 61% annually worldwide ¹	Data scientists spend ~40% of their time gathering and cleaning data ²	training as core part of Al	No one-fit-for-all solution	Keep track on all the experiments, tests and models	
	Huge dataset - TB scale, ETL takes too much time, quite often could be longer than training	Scalable data process Iterative data processing create numerous sets of feature	High expertise requirement Extremely compute intensive	Integration with existing env Hardware-restrict env Realtime inference & retrain	Automation, improvement, monitoring, logging	

E2E AI is challenging - A complex process requires multiple roles with different skills involved: product manager, developer, infrastructure engineer, data scientists, operation engineer...

Motivations – Data platform for End-to-End AI democratization

• Unified Data platform for data analytics, training and inference pipeline

- in-situ data processing, training and inference to avoid massive data movement
- Eliminate data silo, improve resource utilization
- Unified pipeline, simplified software stacks
- Simplified model development and optimization with AI Democratization
 - Built-in high-performance models or tunings to reduce model optimization cost
 - AutoML and Automatic network construction (Neural architecture search) for popular domains
 - Access to a broad range of features/AI algorithms
- Bring End-to-End AI to commodity hardware
 - Scalable AI development, deployment on multi-node clusters
 - Reduce model development and training computational cost

AI democratization

End-to-End AI democratization

• Goal: Make Al accessible & affordable to everyone

- Al restricted to data scientists and data analysts who are specifically trained in Al -> expand it to citizen data science users
- Al requires high-end hardware -> make it scalable to commodity hardware

 Enabling scale-up/out commodity HW with optimized framework and toolkits Delivering popular lighter DL Models with close enough AUC and higher inference throughput Reducing E2E time (including training) on CPU to acceptable range through full pipeline optimization 	Making AI Faster
 Automating E2E democratization pipeline with click to run workflows and AutoML Abstracting complex API for data processing, feature engineering, simplifying distributed training Providing independent pluggable components complements current toolkits and easily integrated with 3rd party ML solutions/platforms 	Making AI Easier
 Bring complex DL to commodity HW – commodity CPU & ethernet Built-in democratized models through parameterized models generated by smart democratization advisor (SDA) Domain specific compact networks searched by smart network accelerator (NAS) 	Making AI more accessible

What to Democratize?

What to democratize?

- Data accessibility & quality
 - Make data access easier & simpler & faster
 - Democratize the data management Data ingestion, data warehouses and data lakes -> explore & visualize & processing
- Storage & compute platforms
 - The Infrastructure E2E AI runs on: Cloud computing, auto-scaling, GPU vs. CPU
 - Democratize the HW scalable infrastructure on commodity hardware
- Algorithms
 - The use, development and sharing of ML & DL algorithms
 - Democratize the algorithms Reduce entry barriers, automatic model searching, AutoML, improve explanation of the results
- Model development
 - Select the most suitable models
 - Democratize the end-to-end model development, training and deployment
- Marketplace
 - Access to the models
 - Democratize the use, exchange, and monetization of data, algorithms, models and outcomes

Data Platform for E2E AI democratization

From case study to Data platform

Data Processing – An RecSys Datasets example

Model	Dataset	Size	Data Schema	Processing Framework	Represented Data
DLRM	Criteo	• 1.3TB (24 days)	 40 columns 0 – label 1-14 integer 15-39 categorical 	• pandas, numpy, spark	Click logs of display ads
DIEN	Amazon Dataset: books & Electronics	• 6.2GB+788MB	 Json files Converted to csv	Python, Spark, Pandas	 E-commerce: Amazon product review
W&D	Kaggle outbrain	• 93GB	 9 csv files, each have multiple columns 	• Spark, NVTabular	 User page view & clicks of multiple publisher sites
RecSys	Twitter	 47GB training 4.8GB test 4.8GB val 	• tsv files, 23 columns	Pandas, NVTabular	Social networks: tweets

RecSys representative datasets (link):

• Fitness tracking dataset (EndoMondo), review data (Amazon, Goggle, Steam games), Social data (Twitter, google), image dataset (Pinterest), Geographical dataset (Google Local)....

Common features:

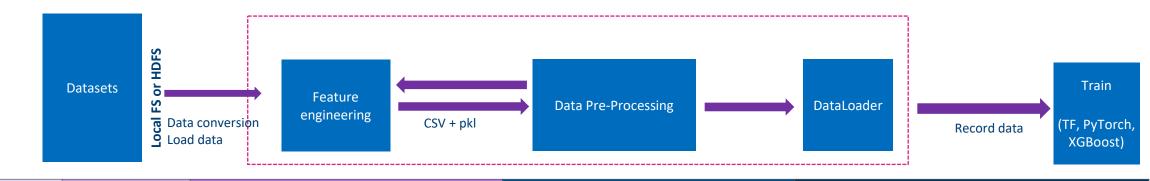
• User/item interactions, star rating, timestamps, product reviews, social networks, item-to-item relationship, images, price/brand/category info, gps data, other metadata

Characteristics

- Huge size need distributed storage system
- Numerical values or categorical values can be handled by simple APIs

Observations: Dataset share similar/common characteristics

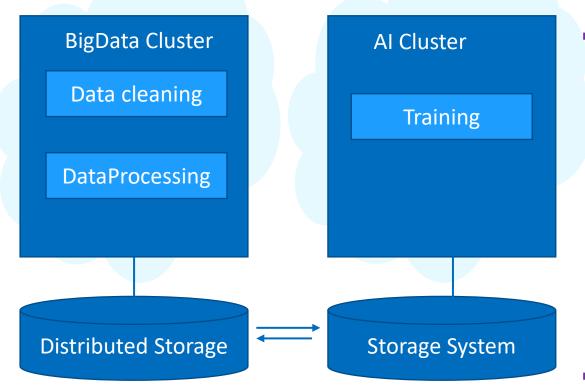
Data Processing - workflows



Model	Dataset	Feature Engineering	Data Pre-Processing	Data Loader
DLRM	Local FS: csv HDFS: csv	 Load data Fill missing data binaries 	 Convert & transform numerical & categorical values Write (convert) processed data to 	Binary files to Pytorch directly
DIEN	Local FS: json	 Convert Json to csv Load csv data Split Generate VOC dictionaries from columns 	Join & adding negative recordsAggregation history record	TFRecord files to TensoFlow
W&D	Local FS: csv HDFS: csv	 Load separate data files and convert to data frames Feature engineering with UDFs compute cosine similarities between features TF Transformation on RDD 	Drop emptyFillna	• TFRecord
RecSys	Local FS: tsv	 load train,test,val tsv; data type conversion; drop features Encoding: Target ending, count encoding, difference encoding building sample csv from validate dataset for submission 	 Transforming categorical features from string to integer Extracting text features from tweets w/ bert tokenizer 	 Parquet files -> data frames -> XGboost

Observations: High performance, parallel data processing needed!

Data Connector



Data Access characteristics:

- Dataset Size: datasets (processed) often exceed the capacity of node-local disk storage, requiring distributed storage systems and efficient network access.
- Number of Files: datasets often consist of billions of files with uniformly random access patterns, something that often overwhelms both local and network file systems.
- Data Rates: training jobs on large datasets often use many GPUs, requiring high aggregate I/O bandwidths to the dataset (many GBytes/s), which can only be satisfied by massively parallel I/O systems.
- **Shuffling and Augmentation:** training data needs to be shuffled and augmented prior to training.
- **Scalability:** users often want to develop and test on small datasets and then rapidly scale up to large datasets.

Challenges

- Separate cluster CPU for data analytics, GPU for training
- Data movement issue moving huge dataset will be of great cost for training
- SW complexity need to enable data loading/shuffling functions for DL frameworks

Observations: Separate data analytics and AI cluster creates challenges, a parallel data connector is required

>>D@

ER CONFERENCE

Feature Store

Challenges

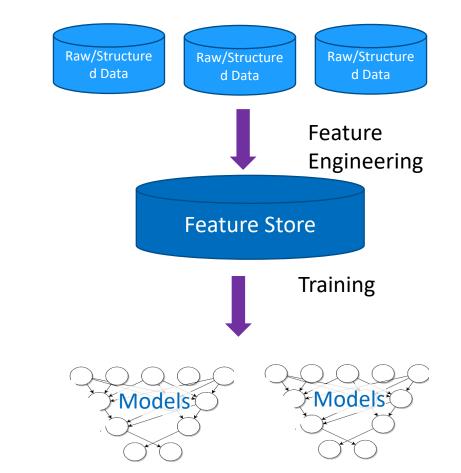
- Problem: Feature engineering is one of the most time-consuming activities in building an end-to-end ML system.
- many teams continue to redevelop the same features from scratch for every new project.

Solution:

 A centralized feature store to build up a foundation of features can be reused across projects.

Feature Store

- Find and share features
- One work for all: can ensures that the same code used to compute the feature values is used for model training and inference.
- Save time and cost

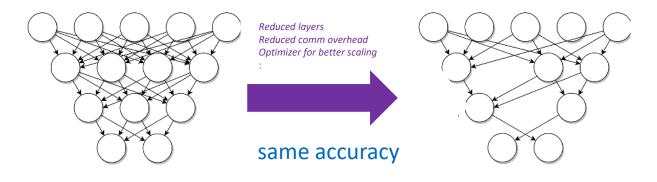


Observations: A feature store bridge data engineering and data science, significantly simplified FE process

Model Democratization

- Overparameterized DL models size & HW growth gap becomes increasingly larger
- Compute intensive model is hard to deploy in resource constraint environment
- Various model optimization technology emerging
 - Compression techniques pruning/quantization
 - Learning techniques distillation
 - Automation HPO, NAS
 - Efficient Architectures fundamental blocks (convolution layer, attention layer – parameter sharing..)
 - Infrastructure high performance training & inference frameworks PyTorch & TF – framework level (TFLite, PyTorch Mobile) and optimized it on target HW (i.e. IPEX and ITEX)
 - Picture Source: On the Opportunities and Risks of Foundation Models





Observations: Overparametrized models needs to be optimized from different perspective!

E2E AI Optimization

Each AI pipeline includes multiple stage

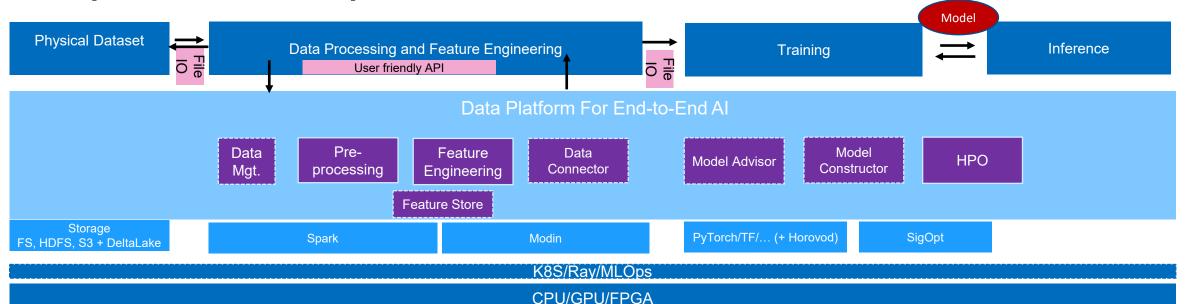
- Data processing, feature engineering, training, HPO, inference, finetune...
- Bottleneck or inefficiency in single stage can impact entire pipeline

E2E AI optimization

- A coherent optimization will be needed:
 - Data processing framework optimization: parallel data processing i.e., Modin, Spark with OAP, RecDP
 - Enhanced feature engineering: better encoding algorithms
 - Reusable feature store
 - Distributed training/scaling: enhanced frameworks: Intel PyTorch Extension (IPEX)/Intel TensorFlow Extension (ITEX); multiple-node training; communication optimization
 - Model optimization: compression/pruning/knowledge distillation/NAS
 - Hyper-parameter tuning: LR/step/batch size...

Observations: Democratization needs to be coherent from end-to-end!

Proposed Data platform Architecture



- Data platform
 - A unified, E2E platform to facilitate E2E AI pipeline
 - **Data Management**
 - Data discovery, exploration, loading of rich data format & semantics from huge datasets
 - Data Model/Data sharding/Data version/intermediate data format
 - Data Processing
 - simplified, user-friendly parallel data processing tool to transform data filtering, normalizing, log transformation...
 - Feature engineering
 - high performance
 - rich feature engineering
 - Feature Store
 - Re-usable centralized storage for features

- Data Connector
 - Distributed data loader to load data from centralized storage systems

 - optimized shuffling/sampling,
 customized record-level iterators or data readers plugin

Model Advisor

- Built-in intelligent for model optimization
- Limited number of models
- Click to deploy recipes
- Model constructor
 - Constructs compact models directly for popular domains, support a broad ٠ range of problems
 - Domain specific supernet
 - Reduced search cost, hardware-aware ٠
- HPO
 - Automatic hyper parameter tuning

Intel[®] End to End AI Optimization Kit

Intel[®] End to End AI optimization Kit

Positioning

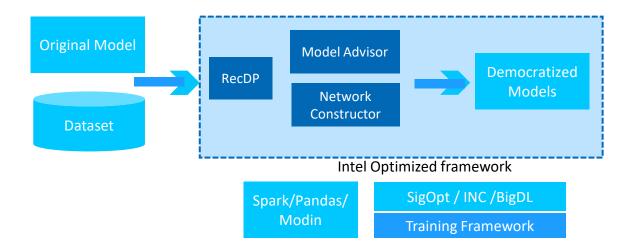
• A composable framework for AI democratization in data processing, training and inference, delivering high performance lightweight networks/models efficiently on commodity HW

Objectives

- Bring E2E AI to existing commodity hardware with 10x speedup over vanilla CPU solution and reduce CPU vs. GPU gaps
- Improve citizen data scientists AI accessibility through builtin models and domain-specific auto-searched compact networks
- Composable design that can be easily plugged/integrated into third-party software

Key Features

- Parallel large-scale data processing
- Pre-trained lightweight models
- Train-free Neural network constructor
- Click to run, deploy E2E workflow

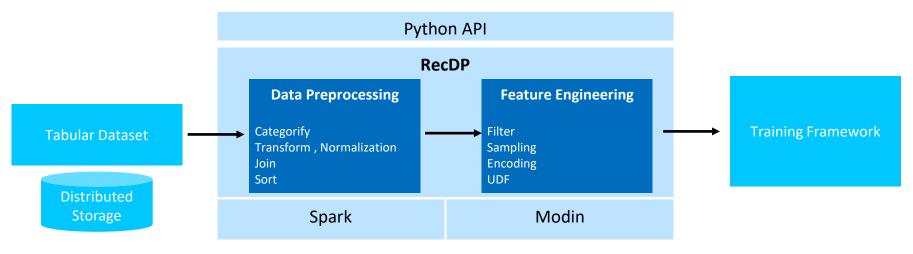


Github: <u>https://github.com/intel/e2eaiok</u>

RecDP – Data Processing

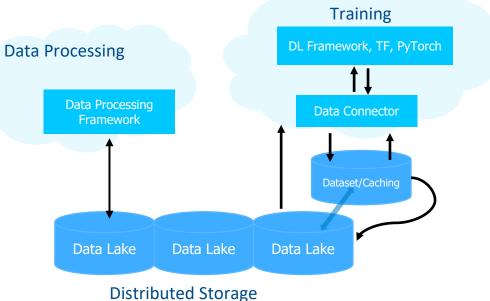
RecDP: Parallel data processing and feature engineering lib

- Started with Tabular dataset for Recommendation System
- Easy-to-use simple and easy-to-use APIs for data scientists
- Optimized Performance adaptive query plan & strategy and OAP extension
- **Pluggable** abstraction layer supports different backend (Spark, extensible to Modin)
- Integration –plugin interface to integrated into 3rd party SW with optimized adaptive plan for Data Process pipeline
- Feature Engineering advanced feature engineering functions (target encoding)



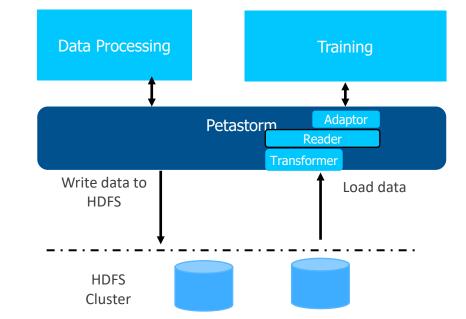
STORAGE DEVELOPER CONFEREN

Data Connector



A parallel data connector

- Separated data processing and training cluster
- Distributed data processing/training cluster on multi-nodes CPU/GPU servers
- Data cannot be fit into single servers, need to be fetched from remote/centralized/disaggregated storage
- Training cluster requires distributed data access
 - High bandwidth data-loading
 - No single point of data aggregation
 - Support local caching to improve performance
 - Support data promotion/flushing



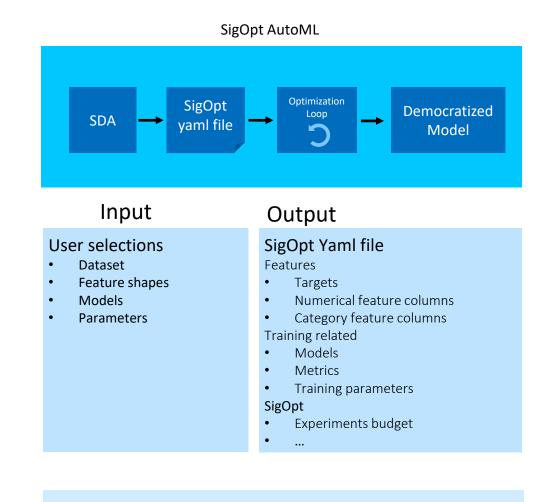
Train/test/validation Dataset

PetaStorm based Data connector

- PetaStorm
 - Open-source data access lib enables single/distributed training of deep learning models directly from multi-terabytes dataset in Parquet format
 - It is scalable, support Native TensorFlow & PyTorch, support shuffling, sharding caching etc.
- Enhancement
 - Raw data loader extension to replace DLRM binary data loader
 - Implemented a method to ensure consistent batch size across ranks
- Benefits
 - With the help of Petastorm, preprocessed data can be written to/read from HDFS directly without manually split or combination

Model Advisor - Smart Democratization Advisor (SDA)

- A user guided tool to facilitate SigOpt recipes generations based with parameterized models
 - Generate SigOpt yaml files based on user choice
 - Provided build-in intelligence through parameterized models
 - Convert manual model tuning to assisted AutoML
 - Automates model democratization process and experiments tracking with SigOpt
 - Speedup efficient frontier (Pareto frontier) search with SigOpt multimetric experiments
 - **Extensible** to integrate other tools



Smart Network Constructor

An automatic approach to democratize Deep Neural networks

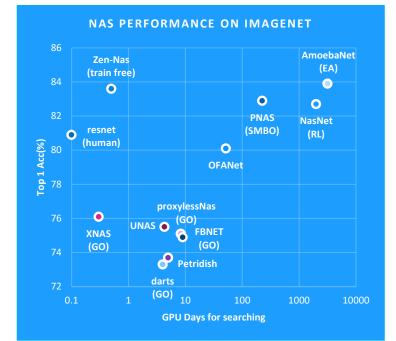
- Compression, HPO cannot cover all the required optimizations for efficient DL
- New technologies emerging to improve DL efficiency
- NAS becomes increasingly popular to design neural networks

NAS Challenges

- Conventional NAS is extremely computation extensive, and GPU based
 - T(NAS) = M * N * T, where M = # of candidates, N= epochs to generate candidates, T = candidate evaluation time
- We need to improve NAS efficiency for automatic AI democratization to construct compact networks

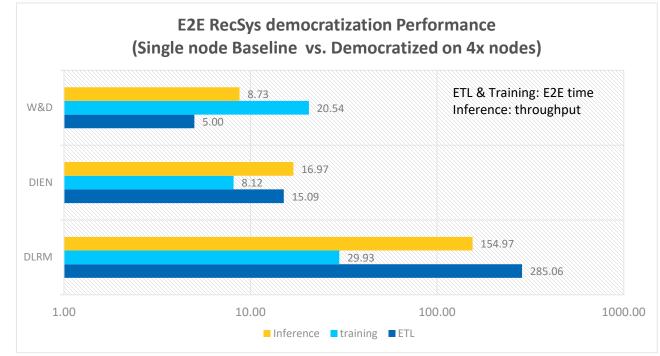
Proxy performance predictor

 Using a zero-cost proxy performance predictor that positively related with training accuracy to score candidate network rather than training



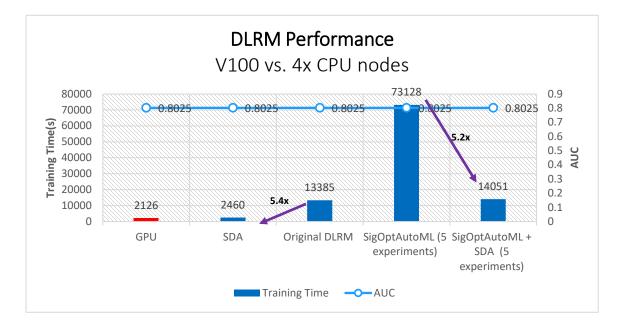
Performance

Performance: RecSys E2E AI Democratization



- E2E democratization delivered 29.9x, 8.12x and 20.5x training time speedup, 154x, 17x and 8.7x inference throughput speedup for DLRM, WnD and DIEN respectively
- Key optimizations/contributors:
 - Scale-out data processing with Spark to replace single thread python data processing (DLRM, DIEN) and scalable distributed training with multiple Xeon nodes
 - Intel optimized training frameworks IPEX & Intel optimized TF & BF16
 - Lighter models reduced MLP & NN layers, reduced communication overhead on Ethernet
 - Optimizer tuning (DLRM) to converge faster with larger batch size
 - Feature Engineering (embedding table, encoding) optimizations

Performance: SDA with SigOpt



- Enhanced SigOpt hyper-parameter tuning with SDA
 - Transform manual optimization to AutoML
 - Reduced total time to get the desired model, 5.2x speedup of 5x SigOpt experiments

Summary

Summary

- End-to-End AI is a complex process involve multiple stages and posed lots of challenges for today's data platform infrastructure
- A unified data platform specifically optimized for End-to-End AI helps to improve performance and reduce cost
- Al democratization makes Al accessible & affordable to everyone
- Based on opensource frameworks/solutions, Intel[®] End-to-End AI optimization Kit complements the Data platform for E2E AI democratization
 - It delivers E2E AI optimization kits from data processing, feature engineering, data connector, model creation & optimization, hyper-parameter optimization
 - Preliminary results with Recommendation systems demonstrated very promising results
 - More workloads Compute Vision/Neural Language processing/Automatic Speech Recognition is coming
- Welcome to download Intel[®] End-to-End AI optimization kit (<u>https://github.com/intel/e2eaiok</u>) and share with us your feedbacks!

Please take a moment to rate this session.

Your feedback is important to us.

Notices and Disclaimers

Performance varies by use, configuration and other factors. Learn more at <u>www.Intel.com/PerformanceIndex</u>.

Performance results are based on testing as of dates shown in configurations and may not reflect all publicly available updates. See backup for configuration details. No product or component can be absolutely secure.

Your costs and results may vary.

Intel technologies may require enabled hardware, software or service activation.

© Intel Corporation. Intel, the Intel logo, and other Intel marks are trademarks of Intel Corporation or its subsidiaries. Other names and brands may be claimed as the property of others.

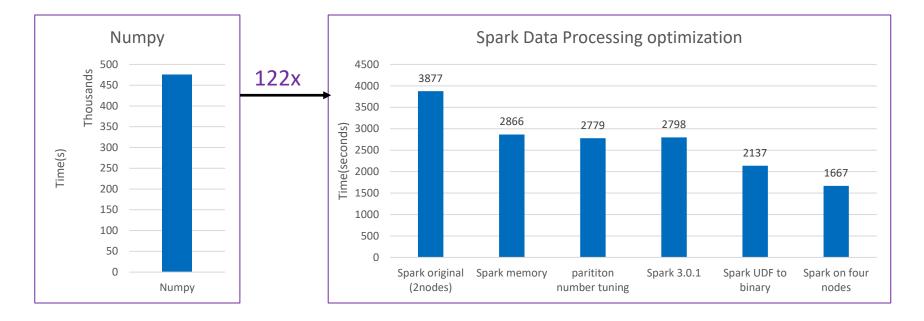
Configuration Details

BaseLine: Test by Intel as of 2021/10. 1-node, 2x Intel[®] Xeon[®] Gold 6240 Processor, 18 cores HT On Turbo ON Total Memory 384 GB (12 slots/ 32GB/ 2666 MHz), BIOS: SE5C620.86B.0X.02.0094.102720191711 (ucode:0x500002C), Fedora 29, 5.3.11-100.fc29.x86_64, pytorch, tensorflow, spark 3, DLRM, WnD, DIEN

Democratization Config: Test by Intel as of 2021/10. 4-nodes, 2x Intel[®] Xeon[®] Gold 6240 Processor, 18 cores HT On Turbo ON Total Memory 384 GB (12 slots/ 32GB/ 2666 MHz), BIOS: SE5C620.86B.0X.02.0094.102720191711 (ucode:0x500002C), Fedora 29, 5.3.11-100.fc29.x86_64, pytorch, IPEX, Intel optimized tensorflow, horovod, spark 3, modified DLRM, WnD, DIEN workloads

31

DLRM Data processing optimizations with RecDP



Significant speedup w/ Spark parallel data processing

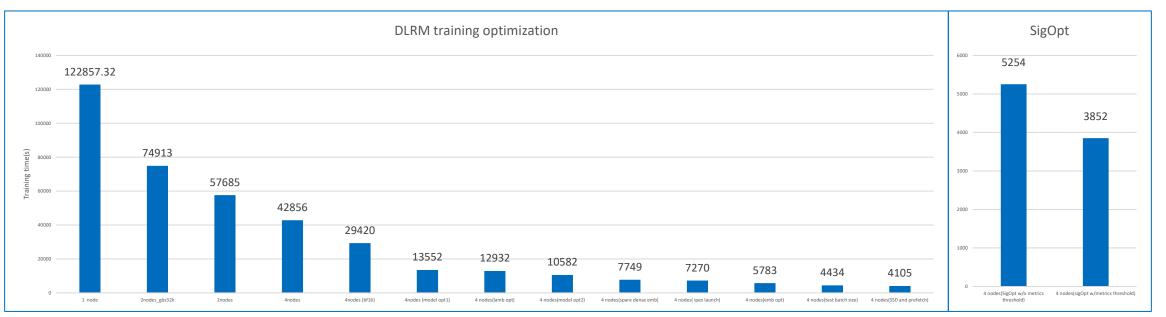
Excellent scalability of Spark DP: 2.32x from 2 nodes to 4 nodes

Ease of use with Spark DP

* with frequent limit – OOM if frequent limit not added

* data connector not included

DLRM Training Optimization with SDA



- Key Optimizations
 - Intel Optimized training framework + Lamb optimizer: 1.29x speedup (74913s to 57865s)
 - BF16: 1.45x speedup (42856s to 29420s)
 - Lighter Model-part1: model optimization(decrease both dense embedding and sparse embedding output dimension from 128 to 64, reduced bot_mlp layer size from 13-512-256-128 to 13-256-128-64, top_mlp layer size from 1024-1024-512-256-1 to 512-512-256-1) delivers 2.17x speedup(from 29420s to 13552s)
 - Optimizer: lamb optimizer delivers 1.04x speedup(from 13552s to 12932s),
 - Lighter Model-part2: model optimization(reduced bot_mlp layer size from 13-256-128-64 to 13-128-64, top_mlp layer size from 512-512-256-1 to 256-128-1) delivers 1.22x speedup(from 12932s to 10582s)
 - Embedding: reducing sparse embedding table number from 16 to 8 delivers 1.36x speedup(from 10582s to 7749s)
 - Framework optimization: using latest IPEX launch scripts (auto bind CCL to specific core) and add KMP setting delivers 1.06x speedup (from 7749s to 7270s)
 - AlltoAll optimization: reduce the output dimension size from 64 to 16 and then repeat 4 times to 64 dimension after alltoall, which delivers 1.25x speedup(from 7270s to 5783s)
 - Learning rate and test optimization: change lamb optimizer learning rate from 16 to 30; remove gradient computing in the test part; increase test batch size from 16K to 128K. These optimizations delivers 1.30x speedup(from 5783s to 4434s)
 - Other optimization: (1) Using NVMe to replace HDD as storage; (2) Leveraging prefetch_generator PyTorch dataloader optimization package to enable batch data generator working in background thread parallelly with training. These optimizations delivers 1.08x speedup (from 4434s to 4105s)
 - SigOpt optimization: In limit experiments trials, SigOpt with metrics threshold delivers 1.06x speedup(from 4105s to 3852s) than previous manual optimized results

34 | ©2022 Storage Networking Industry Association. © Intel. All Rights Reserved.

Model Optimization with SDA

DLRM Net(

(emb dense): ModuleList(

(emb sparse): ModuleList(

(bot_1): Sequential(

(top_1): Sequential(

(4): Sigmoid()

) dpcpp True

(0): EmbeddingBag(3, 64, mode=sum)

(2): EmbeddingBag(63, 64, mode=sum)

(3): EmbeddingBag(10, 64, mode=sum)

(5): EmbeddingBag(4, 64, mode=sum)

(4): EmbeddingBag(155, 64, mode=sum)

(6): EmbeddingBag(976, 64, mode=sum)

(7): EmbeddingBag(14, 64, mode=sum)

(8): EmbeddingBag(108, 64, mode=sum)

(9): EmbeddingBag(36, 64, mode=sum)

(0): EmbeddingBag(39884406, 64, mode=sum)
(1): EmbeddingBag(39043, 64, mode=sum)

(0): IpexMLPLinear(C=13, K=128, bias=True)

IpexMLPLinear(C=128, K=64, bias=True)

(0): IpexMLPLinear(C=415, K=256, bias=True)

(1): IpexMLPLinear(C=256, K=128, bias=True)

(2): IpexMLPLinear(C=128, K=1, bias=True)

(3): Cast(to(torch.float32))

(1): EmbeddingBag(1543, 64, mode=sum)

- Reduce both dense embedding and sparse embedding output dimension from 128 to 64
- Reduce bottom mlp layer size from original size of "13-512-256-128" to current size of "13-128-64"
- Reduce top mlp layer size from original size of "1024-1024-512-256-1" to current size of "256-128-1"

DLRM_Net(

- (emb_dense): ModuleList((0): EmbeddingBag(3, 128, mode=sum) (1): EmbeddingBag(1543, 128, mode=sum)
- (2): EmbeddingBag(63, 128, mode=sum)
- (3): EmbeddingBag(10, 128, mode=sum)
 (4): EmbeddingBag(155, 128, mode=sum)
- (4): EmbeddingBag(155, 128, mode=sum)
 (5): EmbeddingBag(4, 128, mode=sum)
- (6): EmbeddingBag(976, 128, mode=sum)
- (7): EmbeddingBag(14, 128, mode=sum)
- (8): EmbeddingBag(108, 128, mode=sum)
- (9): EmbeddingBag(36, 128, mode=sum)
- (emb_sparse): ModuleList(
 (0): EmbeddingBag(39884406, 128, mode=sum)
- (1): EmbeddingBag(39043, 128, mode=sum)

(bot_1): Sequential(

(0): IpexMLPLinear(C=13, K=512, bias=True)
(1): IpexMLPLinear(C=512, K=256, bias=True)
(2): IpexMLPLinear(C=256, K=128, bias=True)

(top_l): Sequential(

- (0): IpexMLPLinear(C=479, K=1024, bias=True)(1): IpexMLPLinear(C=1024, K=1024, bias=True)
- (1): IpexMLPLInear(C=1024, K=1024, DIAS=True)
 (2): IpexMLPLinear(C=1024, K=512, bias=True)
- (3): IpexMLPLinear(C=512, K=256, bias=True)
- (4): IpexMLPLinear(C=256, K=1, bias=True)
- (5): Cast(to(torch.float32))
 (6): Cigroid()
- (6): Sigmoid()

dpcpp True

--arch-mlp-top="1024-1024-512-256-1"

- 0 - unsigned short	3,42305	3,423ms	128
- addmn	2.0155	2.0155	128
- 1 - relu - 2	500.718ms	500.718ms	128
- unsigned short	4.442ms	4.442ms	128
addmm	3.3275	3.3275	128
— 3 relu — 4	488.669ms	488.669ms	128
- unsigned short	4.180ms	4.180ms	128
- addmm	1,6095	1.6095	128
s relu 6	283.411ms	283.411ms	128
- unsigned short	4.157ms	4.157ms	128
- addmm	441.480ms	441.480ms	128
— 7 — relu — 8	83.995ms	83.995ms	128
- unsigned short	3.316ms	3.316ms	128
- addmm	32.001ms	32.001ms	128
- 9 - signoid	8.356ms	8.356ms	128

Original Model

					<u> </u>								
			464/16004										
			464/16004										
			464/16004										
			464/16004										
			464/16004										
			464/16004										
			464/16004										
			464/16004										
			480/16004										
			480/16004										
			480/16004										
			480/16004										
			480/16004										
			480/16004										
			480/16004										
			480/16004										
			496/16004										
			496/16004										
			496/16004										
			496/16004										
			496/16004										
			496/16004										
			496/16004										
Finished	training	it	496/16004	of	epoch	0,	1731.84	ms/it,	loss	0.128342,	accuracy	96.695	%

--arch-mlp-top=" 512-512-256-1 "

top_1 module	1	1	i i
- unsigned short	3.343ms	3,343ms	128
- addmm	753.999ms	753.999ms	128
- 1			
- relu	219.717ms	219.717ms	128
2	Lange	Income in	La comercia
- unsigned short	4.080ms	4.080ms	128
- addmm	957.987ms	957.987ms	128
- 3			
- relu	267.011ms	267.011ms	128
- 4	1	1	1
- unsigned short	4.375ms	4.375ms	128
- addmm	440.613ms	440.613ms	128
- 5	1		
- relu	84.693ms	84.693ms	128
- 6	1	1	1
- unsigned short	3.320ms	3.320ms	128
- addmm	31.724ms	31.724ms	128
- 7	1	1	1
- sigmoid	9.431ms	9.431ms	128

Optimized Model

Finished training it 464/16004 of epoch 0, 613.90 ms/it, loss 0.128640, accuracy 96.676 % Finished training it 464/16004 of epoch 0, 615.41 ms/it, loss 0.126504, accuracy 96.756 % Finished training it 464/16004 of epoch 0, 621.91 ms/it, loss 0.127110, accuracy 96.724 % Finished training it 464/16004 of epoch 0, 624.91 ms/it, loss 0.128911, accuracy 96.691 % Finished training it 464/16004 of epoch 0, 623.17 ms/it, loss 0.128898, accuracy 96.679 % Finished training it 464/16004 of epoch 0, 613.39 ms/it, loss 0.128860, accuracy 96.669 % Finished training it 464/16004 of epoch 0, 619.47 ms/it, loss 0.128149, accuracy 96.705 % Finished training it 464/16004 of epoch 0, 623.94 ms/it, loss 0.127570, accuracy 96.704 % Finished training it 480/16004 of epoch 0, 617.31 ms/it, loss 0.127326, accuracy 96.713 % Finished training it 480/16004 of epoch 0, 612.40 ms/it, loss 0.128756, accuracy 96.670 % Finished training it 480/16004 of epoch 0, 613.76 ms/it, loss 0.127805, accuracy 96.708 % Finished training it 480/16004 of epoch 0, 615.16 ms/it, loss 0.127408, accuracy 96.720 % Finished training it 480/16004 of epoch 0, 614.36 ms/it, loss 0.128632, accuracy 96.687 % Finished training it 480/16004 of epoch 0, 613.90 ms/it, loss 0.129496, accuracy 96.648 % Finished training it 480/16004 of epoch 0, 613.16 ms/it, loss 0.128469, accuracy 96.685 % Finished training it 480/16004 of epoch 0, 613.93 ms/it, loss 0.128865, accuracy 96.685 % Finished training it 496/16004 of epoch 0, 663.25 ms/it, loss 0.127287, accuracy 96.718 % Finished training it 496/16004 of epoch 0, 664.08 ms/it, loss 0.127821, accuracy 96.692 % Finished training it 496/16004 of epoch 0, 662.62 ms/it, loss 0.128212, accuracy 96.676 % Finished training it 496/16004 of epoch 0, 660.25 ms/it, loss 0.127742, accuracy 96.699 % Finished training it 496/16004 of epoch 0, 666.27 ms/it, loss 0.127530, accuracy 96.702 % Finished training it 496/16004 of epoch 0, 662.56 ms/it, loss 0.128617, accuracy 96.675 % Finished training it 496/16004 of epoch 0, 666.47 ms/it, loss 0.127428, accuracy 96.708 %

ER CONFERENCE

