
2022 Storage Developer Conference, © Google LLC.

A Event

Redfish development and modelling for Google’s data center management

Redfish Adoption at Google

Presented by Derek Chan (dchanman@google.com)

Contributions from Mingyang Sun (smy@google.com)

2022 Storage Developer Conference, © Google LLC.

Main challenges for Redfish adoption

Software Development

● Simplify the cross-org client adoption of Redfish
● Track Redfish usage across the organization

Modelling

● Normalizing telemetry to legacy telemetry schemes (e.g. ID schemes)
● Upstreaming and generalizing the gaps in upcoming usecases

2022 Storage Developer Conference, © Google LLC.

Background
Migrating onto Redfish

2022 Storage Developer Conference, © Google LLC.

Machine Management Service
Background
Google has been using a proprietary
management service prior to Redfish.

The service roughly implements an
Entity-Component design pattern to
represent hardware and their
control/telemetry capabilities in a
system model. motherboard

● FRU info

CPU-0
● FRU info
● CPU info
● Errors

CPU-1
● FRU info
● CPU info
● Errors

DIMM-0
● FRU info (SPD)
● DIMM info
● Errors

DIMM-1
● FRU info (SPD)
● DIMM info
● Errors

Riser
● FRU info (SPD)
● Bus errors

SSD-0
● FRU info
● NVMe Telemetry
● Reset interface
● Firmware

Board Controller
● Voltage sensors
● Thermal sensors
● Reset interface

SSD-1
● FRU info
● NVMe Telemetry
● Reset interface
● Firmware

2022 Storage Developer Conference, © Google LLC.

Background
Google depends heavily on application
services using data from this model to
automate the machine lifecycle.

e.g. Automation will diagnose machine
issues, attempt restart actions, and
only dispatch a human to perform
specific directed actions.

Machine Management Service

motherboard

CPU-0

CPU-1

DIMM-0

DIMM-1

Riser
SSD-0

Board Controller
SSD-1

Telemetry collector

telemetry
database

Diagnosis service

Repairs serviceHuman

2022 Storage Developer Conference, © Google LLC.

Background
Google depends heavily on application
services using data from this model to
automate the machine lifecycle as
much as possible.

e.g. Automation will diagnose machine
issues, attempt restart actions, and
only dispatch a human to perform
specific directed actions.

Machine Management Service

motherboard

CPU-0

CPU-1

DIMM-0

DIMM-1

Riser
SSD-0

Board Controller
SSD-1

Telemetry collector

telemetry
database

Diagnosis service

Repairs serviceHuman

!

!

please replace DIMM 0

2022 Storage Developer Conference, © Google LLC.

Background
Aside from fault detection and repairs,
many other automated services
depend on the same Machine
Management Service.

Machine Management Service

motherboard

CPU-0

CPU-1

DIMM-0

DIMM-1

Riser
SSD-0

Board Controller
SSD-1

Installation

Firmware
Management

Job Provisioning

Hardware
Qualification

Online Fault
Detection

Secure
Decommisioning

others

2022 Storage Developer Conference, © Google LLC.

Redfish Service system

Challenges

chassis

Software engineering challenges:

● business viability depends on
maximizing automation over human
processes

● ownership of these client systems
fall under different organizations
within Google

Modelling challenges:

● clients need backwards compatibility
with the legacy service

● modelling requirements are based
on what the legacy service could do,
not what Redfish could do

Machine Management Service

motherboard

CPU-0

CPU-1

DIMM-0

DIMM-1

Riser
SSD-0

Board Controller
SSD-1

Installation

Firmware
Management

Job Provisioning

Hardware
Qualification

Online Fault
Detection

Secure
Decommisioning

others
processor

scpu0
cpu1

mobo

memory
dimm0
dimm1

storage
ssd0
ssd1

sensors

riser

sensors

2022 Storage Developer Conference, © Google LLC.

Redfish usage
Client development perspective

2022 Storage Developer Conference, © Google LLC.

What do we have today at Google?

● Imperative C++ library
● Started with DMTF/libredfish, our C++ library borrows many concepts

void GetAllPartInfo(RedfishInterface *intf, T callback) {
intf - >GetRoot()[“Chassis”].Each().Do([](auto resource) {

callback(resource[“PartNumber”], resource[“Manufacturer”]);
});

intf - >GetRoot()[“Systems”].Each()[“Processors”].Each().Do([](auto resource) {
callback(resource[“PartNumber”], resource[“Manufacturer”]);

});

intf - >GetRoot()[“Systems”].Each()[“Memory”].Each().Do([](auto resource) {
callback(resource[“PartNumber”], resource[“Manufacturer”]);

});

intf - >GetRoot()[“Systems”].Each()[“Storage”].Each()[“Drives”].Each().Do([](auto resource) {
callback(resource[“PartNumber”], resource[“Manufacturer”]);

});
}

2022 Storage Developer Conference, © Google LLC.

Anticipating scaling
problems

Redfish Service system

chassis

Installation

Firmware
Management

Job Provisioning

Hardware
Qualification

Online Fault
Detection

Secure
Decommisioning

others
processors

cpu0
cpu1

mobo

memory
dimm0
dimm1

storage
ssd0
ssd1

sensors

riser

sensors

An imperative C++ library doesn’t scale
when onboarding many cross-org teams

2022 Storage Developer Conference, © Google LLC.

Anticipating scaling
problems

Redfish Service system

chassis

Installation

Firmware
Management

Job Provisioning

Hardware
Qualification

Online Fault
Detection

Secure
Decommisioning

others
processors

cpu0
cpu1

mobo

memory
dimm0
dimm1

storage
ssd0
ssd1

sensors

riser

sensors

void GetAllPartInfo(RedfishInterface *intf, T callback) {
intf - >GetRoot()[“Chassis”].Each().Do([](auto resource) {

callback(resource[“PartNumber”], resource[“Manufacturer”]);
});

intf - >GetRoot()[“Systems”].Each()[“Processors”].Each().Do([](auto resource) {
callback(resource[“PartNumber”], resource[“Manufacturer”]);

});

intf - >GetRoot()[“Systems”].Each()[“Memory”].Each().Do([](auto resource) {
callback(resource[“PartNumber”], resource[“Manufacturer”]);

});

intf - >GetRoot()[“Systems”].Each()[“Storage”].Each()[“Drives”].Each().Do([](auto resource) {
callback(resource[“PartNumber”], resource[“Manufacturer”]);

});
}

void GetDrivePartInfo(RedfishInterface *intf, T callback) {
intf - >GetRoot()[“Chassis”].Each().Do([](auto resource) {

callback(resource[“PartNumber”], resource[“Manufacturer”]);
});

intf - >GetRoot()[“Systems”].Each()[“Storage”].Each()[“Drives”].Each().Do([](auto resource) {
callback(resource[“PartNumber”], resource[“Manufacturer”]);

});
}

void GetCpuStats(RedfishInterface *intf, T callback) {
intf - >GetRoot()[“Systems”].Each()[“Processors”].Each().Do([](auto resource) {

callback(resource[“ProcessorId”]);
});

}
void GetCpuStats(RedfishInterface *intf, T callback) {

intf - >GetRoot()[“Chassis”].Each()[“Thermal”].Each().Do([](auto resource) {
callback(resource[“Reading”]);

});
} void GetCpuThermals(RedfishInterface *intf, T callback) {

intf - >GetRoot()[“Chassis”].Each()[“Thermal”].Each().Do([](auto resource) {
callback(resource[“Reading”]);

});
intf - >GetRoot()[“Chassis”].Each()[“Sensor”].Each().Do([](auto resource) {

callback(resource[“Reading”]);
});

}

python?

golang?

2022 Storage Developer Conference, © Google LLC.

Anticipating scaling
problems

How do we simplify Redfish usage
across the company for many
independent teams?

Requirements:

● automate the tracking of
Resource and Property
requirements

● abstract away the usage of
performance features

● provide functional query
language that can be
programming language agnostic

Redfish Service system

chassis

Installation

Firmware
Management

Job Provisioning

Hardware
Qualification

Online Fault
Detection

Secure
Decommisioning

others
processors

cpu0
cpu1

mobo

memory
dimm0
dimm1

storage
ssd0
ssd1

sensors

riser

sensors

2022 Storage Developer Conference, © Google LLC.

Redfish query
parameters

● Query params are “optional” according to the
spec, but they are not optional to Google for
automation throughput requirements
○ $expand, $select
○ ETAGs for caching

● Clients need to know when to efficiently use
query features if a server has it available

Redfish Specification
Version 1.15.1

April 7 2022

2022 Storage Developer Conference, © Google LLC.

Problems

many teams
adopting Redfish

how do we track requirements company-wide?

how do we simplify development?

one team
adopting Redfish how do we meet SLOs/SLAs?

how do we model requirements in Redfish?
“tactical”

“organizational”

2022 Storage Developer Conference, © Google LLC.

Redfish Ergonomics Roadmap

2022 Storage Developer Conference, © Google LLC.

Problems

many teams
adopting Redfish

how do we track requirements company-wide?

how do we simplify development?

one team
adopting Redfish how do we meet SLOs/SLAs?

how do we model requirements in Redfish?
“tactical”

“organizational”

2022 Storage Developer Conference, © Google LLC.

Approach

how do we track requirements company-wide?

how do we simplify development?

how do we meet SLOs/SLAs?

We plan to provide a common development
framework across Google:

● Abstract away Redfish query parameters
● Normalize modelling discrepancies

As a byproduct of this framework, can we create
common development platforms?

● property usage tracking
● performance monitoring

2022 Storage Developer Conference, © Google LLC.

software engineering activities

query tools

write queriesProposal
Define a Redfish query language.

Provide Redfish query engines as a
common platform for developers to
use.

Provide analysis tools for monitoring
Redfish client usage.

users

resource query:
“/Systems[*]/Processors[*]”

property query:
“PartNumber”, “SerialNumber”, “Manufacturer”

Use query engine to
run queries in

production

Use query-to-profile
tool to generate an

Interop Profile

Use engine tracer to
debug server
interactions

production automation integration debugging interop validation

2022 Storage Developer Conference, © Google LLC.

What’s in a query?

RedPath

JSON Fragment

what resources do I want?

what properties do I want?

“/Systems[*]/Processors[Status.Health=OK]/Metrics”

“/CorrectableCoreErrorCount”
“/CorrectableOtherErrorCount”

“/PCIeErrors/CorrectableErrorCount”

2022 Storage Developer Conference, © Google LLC.

What’s in a query?

{
“QueryName”: “ProcessorErrors”,
“Subqueries”: [

{
“RedPath”: “/Systems[*]/Processors[Status.Health=OK]/Metrics”,
“PropertyPath”: [

“/CorrectableCoreErrorCount”,
“/CorrectableOtherErrorCount”,
“/PCIeErrors/CorrectableErrorCount”

]
}

]
}

2022 Storage Developer Conference, © Google LLC.

RedPath

By Patrick Boyd from Dell Technologies

https://github.com/DMTF/libredfish#redpath

https://github.com/DMTF/libredfish#redpath

2022 Storage Developer Conference, © Google LLC.

JSON Fragment
RFC6901: JSON Pointer
https://datatracker.ietf.org/doc/html/rfc6901

The same RFC is used in the Redfish
Specification DSP0266 for fragments.

https://datatracker.ietf.org/doc/html/rfc6901

2022 Storage Developer Conference, © Google LLC.

Queries are more portable than code

Datacenter Service

C++ Redfish Client library

Google Redfish Machine A Contoso Redfish Machine A Contoso Redfish Machine B

Imperative query code

Datacenter Service

Imperative query code

Datacenter Service

Imperative query code

2022 Storage Developer Conference, © Google LLC.

Queries are more portable than code

Datacenter Service

C++ Redfish Client library

Google Redfish Machine A Contoso Redfish Machine A Contoso Redfish Machine B

Imperative query code

Datacenter Service

Imperative query code

Datacenter Service

Imperative query code
void GetAllPartInfo(RedfishInterface *intf, T callback) {

intf - >GetRoot()[“Chassis”].Each().Do([](auto resource) {
callback(resource[“PartNumber”], resource[“Manufacturer”]);

});

intf - >GetRoot()[“Systems”].Each()[“Processors”].Each().Do([](auto resource) {
callback(resource[“PartNumber”], resource[“Manufacturer”]);

});

intf - >GetRoot()[“Systems”].Each()[“Memory”].Each().Do([](auto resource) {
callback(resource[“PartNumber”], resource[“Manufacturer”]);

});

intf - >GetRoot()[“Systems”].Each()[“Storage”].Each()[“Drives”].Each().Do([](auto resource) {
callback(resource[“PartNumber”], resource[“Manufacturer”]);

});
}

2022 Storage Developer Conference, © Google LLC.

Queries are more portable than code

Datacenter Service

C++ Redfish Client library

Google Redfish Machine A Contoso Redfish Machine A Contoso Redfish Machine B

query string

Datacenter Service

query string

Datacenter Service

query string

C++ Query Engine library

2022 Storage Developer Conference, © Google LLC.

Queries are more portable than code

Datacenter Service

C++ Redfish Client library

Google Redfish Machine A Contoso Redfish Machine A Contoso Redfish Machine B

query string

Datacenter Service

query string

Datacenter Service

query string

C++ Query Engine library

“/Chassis[*]”: “PartNumber”, “Manufacturer”
“/Systems[*]/Processors[*]”: “PartNumber”, “Manufacturer”
“/Systems[*]/Memory[*]”: “PartNumber”, “Manufacturer”
“/Systems[*]/Storage[*]/Drives[*]”: “PartNumber”, “Manufacturer”

2022 Storage Developer Conference, © Google LLC.

Queries are more portable than code

Query language C++ Query Engine Python Query Engine

2022 Storage Developer Conference, © Google LLC.

Queries are more portable than code

Query language C++ Query Engine Python Query Engine

Vendor developed
queries

Manufacturing Tests

2022 Storage Developer Conference, © Google LLC.

Queries are more portable than code

Query language C++ Query Engine Python Query Engine

Vendor developed
queries

Manufacturing Tests

Google datacenter
health automation

rules

Google datacenter
health automation

actions

2022 Storage Developer Conference, © Google LLC.

Queries are more portable than code

Query language C++ Query Engine Python Query Engine

Vendor developed
queries

Manufacturing Tests

Google datacenter
health automation

rules

Google datacenter
health automation

actions

“/Chassis[*]”: “Errors”
“/Systems[*]/Processors[*]”: “Errors”
“/Systems[*]/Memory[*]”: “Errors”

Error Detection Diagnostic

2022 Storage Developer Conference, © Google LLC.

Queries are more portable than code

Query language C++ Query Engine Python Query Engine

Vendor developed
queries

Manufacturing Tests

Google datacenter
health automation

rules

Google datacenter
health automation

actions

“/Chassis[*]”: “Errors”
“/Systems[*]/Processors[*]”: “Errors”
“/Systems[*]/Memory[*]”: “Errors”

“/Chassis[*]”: “Errors”
“/Systems[*]/Processors[*]”: “Errors”
“/Systems[*]/Memory[*]”: “Errors”

Error Detection RuleError Detection Diagnostic

2022 Storage Developer Conference, © Google LLC.

● Hard to keep track of different property/resource requirements, especially with
more users onboarding to Redfish

● Nobody likes to write Interop Profiles
● Could we generate Profiles automatically from queries?

Query Language

Usage tracking

RedPath
(resources I care about)

Profile
Generator

JSON Fragment
(properties I care about)

Very simple Interop Profile?

2022 Storage Developer Conference, © Google LLC.

Our ergonomics roadmap
users users users users users

queries queries queries queries queries

query engine

redfish client

Google redfish machine A Contoso redfish machine A Contoso redfish machine B

profile generator

profile profile profile profile profile

interop validator

Future Contoso machine

2022 Storage Developer Conference, © Google LLC.

We’re looking for feedback

● Can we standardize on these client interfaces?

● Tools will be developed in our GitHub repo for Machine Management
● https://github.com/google/ecclesia-machine-management
● We participate actively in the DMTF Tools Task Force

https://github.com/google/ecclesia-machine-management

2022 Storage Developer Conference, © Google LLC.

Data modelling
Normalization with legacy telemetry

2022 Storage Developer Conference, © Google LLC.

Problems

many teams
adopting Redfish

how do we track requirements company-wide?

how do we simplify development?

one team
adopting Redfish how do we meet SLOs/SLAs?

how do we model requirements in Redfish?
“tactical”

“organizational”

2022 Storage Developer Conference, © Google LLC.

Redfish Service system

Legacy compatibility

chassis

Over a decade of automation has been
developed using the legacy management
system.

Switching automation to Redfish either
means:

● make the legacy API match
Redfish

● make Redfish match the legacy
API

● have an abstraction layer to make
both APIs match

Machine Management Service

motherboard

CPU-0

CPU-1

DIMM-0

DIMM-1

Riser

SSD-0

Board Controller
SSD-1

Installation

Firmware Management

Job Provisioning

Hardware Qualification

Online Fault Detection

Secure Decommisioning

others
processors

cpu0
cpu1

mobo

memory
dimm0
dimm1

storage
ssd0
ssd1

sensors

riser

sensors

2022 Storage Developer Conference, © Google LLC.

Making Redfish match the legacy API

The legacy API exposes more debug information than Redfish does today

● Low level telemetry requirements (exporting GPIOs)
● Custom telemetry (e.g. custom kernel sysfs files)

This produces some anxiety within client teams at Google:

● Speed of upstreaming concerns
○ On paper, DMTF interactions are scary because they are not in the control of our company
○ In practice, DMTF has been responsive to GitHub issues and pulls

● Generalizability concerns
○ If we are the only exporters of this sort of telemetry, why switch from legacy to Redfish?

2022 Storage Developer Conference, © Google LLC.

Case study: NVMe telemetry

Repair automation rules are based on low-level commands/log page (Identify,
Device Self-test, FW Slot Info…).

What to do?

● change legacy services to match
Redfish’s higher level statuses, and
migrate all the clients?

● upstream low-level properties into
the Redfish/Swordfish standards?

NVM Express
Revision 1.4

June 10, 2019

2022 Storage Developer Conference, © Google LLC.

Case study: custom hardware firmware update

Firmware update process requires setting a GPIO to disable write protect on one
portion of storage.

Legacy API: expose a GPIO that updater knows to set to HIGH.

Redfish: patch Updateable=True in FirmwareInventory.

What to do?

● change all users of the legacy API to new semantics for Updateable?
● keep the legacy API and emulate a GPIO using the Redfish property?

2022 Storage Developer Conference, © Google LLC.

Case study: hardware identification

Hardware ID scheme must be consistent with the legacy system.

What to do?

● Make Redfish servers export Google’s IDs?
● Make Google’s systems with decades of historical data change their ID scheme to something

in Redfish?

Solution:

● Meet in the middle: generalize the Google ID scheme, and make it possible to derive Google
IDs using standard Redfish properties

● Concerns: if we are the only folks using this scheme, we cannot rely on the properties being
available on arbitrary off-the-shelf systems

● Very interested in knowing what other companies are doing, and whether there is opportunity
to standardise on a hardware identification scheme

2022 Storage Developer Conference, © Google LLC.

Repair Path IDs
1: “the baseboard”

5: “the processor with service label CPU0
on the baseboard”

14: “the processor with service label CPU
on the riser attached to the cable with
service label RISER0”

17: “the processor with service label CPU
on the riser attached to the cable with
service label RISER2”

https://github.com/google/ecclesia-
machine-
management/blob/master/ecclesia/lib/redfi
sh/g3doc/topology.md

[]

[“CPU0”]

[“RISER0”, “DOWNLINK”, “CPU”]

[“RISER2”, “DOWNLINK”, “CPU”]

https://github.com/google/ecclesia-machine-management/blob/master/ecclesia/lib/redfish/g3doc/topology.md

2022 Storage Developer Conference, © Google LLC.

Some upcoming usecases

2022 Storage Developer Conference, © Google LLC.

Storage key management

● Lifecycle
○ Write a cryptographic seed to some hardware
○ Generate keys from the seed
○ Use keys to unlock storage during boot
○ Monitor the health of the key
○ Drainless key rotation
○ Emergency password recovery

● Things needing to be modelled
○ cryptographic seed: logical resource?
○ the hardware(s) storing the cryptographic seed

● Swordfish plans for Google?
○ Want SecuritySend/Receive
○ Maybe propose some action to StorageController? Schema proposal still work in progress.

2022 Storage Developer Conference, © Google LLC.

SATA Disk: TCG, ATA, S.M.A.R.T

● Enterprise TCG security mode feature set
● Hybrid SMR feature sets
● Legacy ATA security feature set for drive telemetry and control
● Use S.M.A.R.T. for failure detection

2022 Storage Developer Conference, © Google LLC.

NVMe-MI

● Enumeration - find all NVMe-MI devices in the system
● Thermal monitoring - GetLogPage
● Firmware update - Need Admin vendor-unique (VU) commands (Prepare,

Done)
● Telemetry - GetLogPage, GetFeatures, Identify, VU commands
● TCG passthrough interface

2022 Storage Developer Conference, © Google LLC.

Other misc. low-level telemetry

● Hardware specific fuse states
● Profiling data
● Low level electrical debugging

○ voltage rail status, voltage margining
○ debug mode status, watchdog
○ specific failure signals exposed as GPIOs

● Telemetry decoding
○ Some Redfish endpoints cannot store our decoder, so decoding needs to be done by a

Redfish client/proxy
○ Raw telemetry being exposed as LogEntry today; we’re not expecting this solution to be

scalable

2022 Storage Developer Conference, © Google LLC.

In summary

2022 Storage Developer Conference, © Google LLC.

Main challenges for Redfish adoption

Software Development

● Simplify the cross-org client adoption of Redfish
● Track Redfish usage across the organization

Modelling

● Normalizing telemetry to legacy telemetry schemes (e.g. ID schemes)
● Upstreaming and generalizing the gaps in upcoming usecases

Get in touch!

● Library development at https://github.com/google/ecclesia-machine-management
● Email: dchanman@google.com

https://github.com/google/ecclesia-machine-management
mailto:dchanman@google.com

	Redfish Adoption at Google
	Main challenges for Redfish adoption
	Background
	Background
	Background
	Background
	Background
	Challenges
	Redfish usage
	What do we have today at Google?
	Anticipating scaling problems
	Anticipating scaling problems
	Anticipating scaling problems
	Redfish query parameters
	Problems
	Redfish Ergonomics Roadmap
	Problems
	Approach
	Proposal
	What’s in a query?
	What’s in a query?
	RedPath
	JSON Fragment
	Queries are more portable than code
	Queries are more portable than code
	Queries are more portable than code
	Queries are more portable than code
	Queries are more portable than code
	Queries are more portable than code
	Queries are more portable than code
	Queries are more portable than code
	Queries are more portable than code
	Usage tracking
	Our ergonomics roadmap
	We’re looking for feedback
	Data modelling
	Problems
	Legacy compatibility
	Making Redfish match the legacy API
	Case study: NVMe telemetry
	Case study: custom hardware firmware update
	Case study: hardware identification
	Repair Path IDs
	Some upcoming usecases
	Storage key management
	SATA Disk: TCG, ATA, S.M.A.R.T
	NVMe-MI
	Other misc. low-level telemetry
	In summary
	Main challenges for Redfish adoption

