
1 | ©2022 Samsung Electronics. All Rights Reserved.

A Event

Design Modern Object Store Server
for Lustre File System
in the Era of Solid State Storage and Persistent Memory

Yong Chen, Principal Software Engineer Lead and Architect
SAIT, Samsung Electronics

2 | ©2022 Samsung Electronics. All Rights Reserved.

Agenda
 Introduction
 to Lustre architecture

Background
 on HPC storage

Challenging Issues
 in existing Lustre design

Design Proposal
 to solve these issues, and modernize Lustre

Potential Benefits and Future Impact
 improved I/O performance from full potential of hardware
 future Lustre innovations and re-invigorating developer community

3 | ©2022 Samsung Electronics. All Rights Reserved.

Lustre Architecture
A closer look

4 | ©2022 Samsung Electronics. All Rights Reserved.

The Lustre File System
 Open-source distributed parallel file system

 designed for extreme scalability and high performance
 used to support most demanding data-intensive HPC workloads, e.g. weather, molecule

 provides massively parallel data access for 10s of K clients, the dense computing node
 also being used in emerging Big Data analytics and Deep Learning applications

 Most trusted open source storage solution for supercomputers: stable
 widely adopted by supercomputers such as those ranked in TOP500 list, e.g.

 #1 ranked Fugaku (June 2020) in Japan by Fujitsu
 #1 ranked Frontier (June 2022) at Oak Ridge NL, the first/only known exascale supercomputer

 Lustre server components + targets
 MGS(MGT), global configuration and registration of all servers
 MDS(MDT), Metadata Server, central brain for the whole system

 inode map for client to look up where user files are stored
 OSS(ODT), Object Store Sever

 target is where the user data are stored
 Infrastructure layer

 LNet, Portal RPC, used to communicate between clients and servers

5 | ©2022 Samsung Electronics. All Rights Reserved.

Lustre System Architecture
 Lustre client
 the heart to carry out parallel file system logic
 combines metadata and object storage

to present coherent POSIX file system tree
 the active driver to achieve parallel I/O

by communicating with servers thru RPC calls
 basic I/O flow

 retrieves metadata from MDS => LMV
 including file Layout information

 builds LOV to map file
 data chunks to objects on OSS

 issues Rd/Wr requests directly to OSS
 coordinate to acquire proper locks

to maintain consistency

7 | ©2022 Samsung Electronics. All Rights Reserved.

Lustre File vs Object Store Servers/Targets
 Lustre POSIX File with 128b FID

 64b Sequence #., unique across all OSTs/MDTs
 32b Object Index #: reference to objects within OST

 global inode file metadata descriptor on MDT
 POSIX Attributes: uid, gid, perm, timestamp, size
 Extended Attributes: e.g. Layout EA
 LOV: Logic Object View

 data blocks are in striped across up to 2000 OSTs

OSS/OST, building blocks of I/O’s & storage
 the bulk of Lustre server nodes, a few MDS

 attached with multiple large storage array enclosures
 key enabling factor for massively parallel I/O

 This talk will focus on OSS/OST

8 | ©2022 Samsung Electronics. All Rights Reserved.

Storage in Supercomputing
The landscape

9 | ©2022 Samsung Electronics. All Rights Reserved.

Lustre with All-Flash
 Imminent challenges to Lustre after having served us for 20+ years
 a lot has advancements in Hardware and Software
 SSDs have taken over, dominating mass storage even in the supercomputer data centers

 straight-forward HW upgrade to SSDs?
 #5 ranked TOP500 Perlmutter supercomputer at Lawrence Berkeley NL
 the largest all-flash storage system as of June 2021
 balancing act to keep $Storage < 15% $Total due to higher SSD $cost

 3-4X more powerful computing than previous Cori
 with only 35PB SSD vs 30PB of HDD on older Cori

 trade-off: performance over capacity
 Return on Investment, per Lockwood blog
 high-bandwidth jobs: “outstanding”
 high IOPS & metadata heavy: only “good enough”

 “still quite a bit of work to do to get the most out of big flash investment …
Software continue to be the challenge…tradeoffs to make in Lustre…a lot of work in Software”

 Results promising, but not simple straightforward HW upgrade
 Bold, right choice in 2018 to move on from HDDs, SSD certainly IS the future!

10 | ©2022 Samsung Electronics. All Rights Reserved.

Challenges in Distributed File Systems
 ORNL Frontier Orion the largest Lustre namespace

 built on multi-tiered systems with SSDs/HDDs
 480x NVMe SSD metadata tier
 5.4K NVMe SSD performance tier,11.5PB based on SSU-F
 47.7K HDD capacity tier, 700PB based on SSU-D

 20x times the storage of Perlmutter 35PB SSD-only

 CAP: Consistency, Availability, Partition Tolerance
 i.e. correct Rd after Wr; Robust; afford to lose msg
 dictates distributed systems cannot maintain all three

 Lustre: POSIX strict Consistency
 via centralized MDS default only 1
 Availability: Active/Passive failover, MDS no SPOF

 no improvement to performance, still potential bottleneck
 Scale-out: DNE with multi-MDS, dedicated MDS for cascading sub-directory nodes,

 strictly, metadata is sharded, not Partition Tolerant
 primarily Parallel file system for concurrent I/O, not distributed

 active research area to improve metadata performance & scalability
 Alternative?

 POSIX is performance constrained, can we move away from POSIX?
 that is exactly the direction Intel’s DAOS project has taken

40x MDS

450x OSS 1350x OST

11 | ©2022 Samsung Electronics. All Rights Reserved.

Intel DAOS: Distributed Asynchronous Object Storage
 Aurora at Argonne NL, due to complete in late 2022 after delays
 2x exaFLOPS compared to 1.1 in Frontier
 major leap of technology advancements

 Sapphire Rapids CPU, PCIe Gen 5, and CXL
 10PB memory and 230PB SSD storage

 vs 11.5PB SSDs & 700PB HDDs in Frontier
 DAOS as storage platform, first discussed at SDC’15
 native Key-Value Object Store to overcome POSIX limitations

 vs POSIX based Parallel File System e.g. Lustre
 designed from ground up to support Storage Class Memory

 Persistent Memory (3D-XPoint Optane) and NVMe SSDs
 both Client & Server running in User-Space

 Polling mode vs kernel Interrupt to bypass Linux kernel at both SQ & CQ time
 combined with RDMA, to boost bandwidth and lower latency

 DAOS delivers High-IOPS, High-Bandwidth and Low-Latency
 a step closer to all-in-memory High Performance Computing

12 | ©2022 Samsung Electronics. All Rights Reserved.

 DAOS takes top 11 spots out of 22 in IO500 ISC22 (vs 2 out of 22 for Lustre)
 Historically HPC legacy apps depend on POSIX
 many lessons on backward compatibility

 HP/Intel’s VLIW Itanium IA-64 vs x86
 Windows 8 on Surface RT ARM: Marketplace App vs Win32

 thousands of important apps can’t be ignored or re-written
 DAOS’s solutions to POSIX vs Object Store interface

 per Lockwood ISC19 Blog on discussion with Architect Lombardi
 A: FUSE library approach, but with performance hit
 B: POSIX intercept/shim using preload library, but with consistency risk

 performance-sensitive app to bypass FUSE and map POSIX API calls to DAOS native APIs call

 Non-technical concerns in DAOS
 exclusive dependency on Intel Optane

 no alternative or 2nd supplier to Intel’s, also tied to Intel Xeon CPU
 persistent memory expensive, chicken-egg issue, need more killer use cases

The Case of Forward Looking vs Backward Compatibility

13 | ©2022 Samsung Electronics. All Rights Reserved.

The Case of Legacy Support: DAOS vs Lustre
We agree with the long term direction of Intel DAOS project
 we applaud Intel achievements in DAOS to showcase what latest technologies capable of
 we also recognize Intel significant contributions HW/SW to Solid State Storage & PMEM

 NVMe, DPDK/SPDK/PMDK, 3D-XPoint/Optane, CXL
We believe Lustre continue to play important role in foreseeable future

 1 in 4 (28%) are running Lustre from IO500 top 83
 we like to continue improve & modernize Lustre
 Our approach is to apply the same set of modern

technologies to Lustre project
 Key-Value Store + Erasure Coding
 User-mode SPDK/PMDK/RDMA

 maintain full compatibility
 existing legacy applications can benefit directly

without costly modification or re-development
 This talk to share what and how we try to achieve this goal

IO500 ISC22
(total 83)

DAOS Lustre

Top 22 11 (50%) 2 (15%)

Top 45 13 (29%) 12 (26%)

All 83 13 (16%) 23 (28%)

14 | ©2022 Samsung Electronics. All Rights Reserved.

Challenges in Lustre
Issues and proposals

15 | ©2022 Samsung Electronics. All Rights Reserved.

RAID The Storage Workhorse
Guard against Hard Drive Failure since 1988
 will continue in the future, even with SSD
 Block interface: LBA with fixed-length units

OST Backend options: either LDDISKFS/Ext4 or ZFS
 both heavily rely on RAID, usually through hardware RAID controller
 ZFS: unique design with special RAID-Z, per-file basis

RAID usage in Lustre field deployments
 Frontier Orion, ClusterStor E1000, All-Flash-Array SSU-F

 Cray GridRAID declustered-P, 2x OST:12-SSD/each

Samsung Supercomputer for 30y, from Cray in 1992
 latest SSC-21 HPE with 30 PetaFLOPS, Ranked 15th on TOP500
 DDN Lustre, using 8+2 RAID-6 in all-flash-array

16 | ©2022 Samsung Electronics. All Rights Reserved.

RAID The Storage Workhorse, but…
 RAID, challenged in the era of Solid State Drives
 hinders SSD innovations, hard to leverage native features as Zoned Namespaces ZNS
 not friendly to SSD performance, HBA adds significant overhead to latency
 only protects drive failure within array, (usually) not across servers

 the worst enemy: lengthy recovery window, longest wait for rebuild to finish
 the system barely functions during degraded mode

 pray no other drive fails, or it will get even slower, or lose the whole array
 the bad new: SSD drive capacity increasingly getting bigger

 concerns over RAID recovery counter to SSD maker interests, which is to roll out bigger drives

 Issue #1: need better protection than RAID
 Proposal #1: Erasure Coding
 critical change: to un-shackle from the simple matrix mapping restriction in RAID
 when combined together the two can overcome RAID shortcomings

+ Object Store

17 | ©2022 Samsung Electronics. All Rights Reserved.

Erasure Coding vs RAID
 Erasure Coding 101
 inter-planetary communication for Voyager probe

 built-in encoding to solve long distance transmission loss
 round-trip response to/from Earth: 5 hours

 like RAID, data + encoded chunks, with redundancy
 rebuild missing chunks, if under threshold

 certain Erasure Coding equivalent to RAID
 if using same Reed Solomon algorithm
 EC provides a lot more protection options and flexibilities

 Erasure Coding: pros and cons
 ideal for large I/O block size, fitting Lustre for HPC workload w/ multiple MBs 1-4MB

typical
 small I/O, such as metadata changes, better to use simple replication

 expensive computational overhead, similar to RAID
 EC acceleration using Computational Storage Device is active research area
 Samsung Smart-SSD based effort is ongoing with collaborator at Iowa State University

18 | ©2022 Samsung Electronics. All Rights Reserved.

Compute Overhead: RAID vs Erasure Coding
 Setup: RAID vs EC + Object Store

 software RAID (kernel md) vs EC + Object Store using Ceph RBD with Jerasure EC library
 BW non-comparable: local PCIe Gen3 vs 100GbE Object Store; cpu% Relatively
 fio: QD:32; Sequential Write BW in 2MB or 4MB; CPU utilization all = (usr% + kernel sys%)
 quick experiment: no configuration optimizing or tuning

 Results: similar for RAID and Erasure Coding, compute overhead significant, both need HW acceleration
 Total cpu% equivalent around 28% for 2MB; around 32% for 4MB
 Total kernel sys% for Software RAID MD: 82%, while 28% for Jerasure EC
 SSD Write bandwidth utilization: Software RAID significantly low: 12% (RAID6 4+2) compared to 33% (EC)

2095

998 1044

3214
3438

12.2

28.8

44.1

25.5
28.3

0.0

10.0

20.0

30.0

40.0

50.0

60.0

0

500

1000

1500

2000

2500

3000

3500

4000

4500

nvme raid6 4+2 raid5 5+1 EC 10+2 EC 5+1

CP
U

 u
til

iza
tio

n
%

Th
ro

up
hp

ut
 in

 M
B/

s

protection scheme

BW vs cpu%, iosize=2MB

Seq Wr in 2MB cpu-s% cpu%

2095

772

4053 4020

17.2

32.3 31.7 31.8

0.0

10.0

20.0

30.0

40.0

50.0

60.0

0

500

1000

1500

2000

2500

3000

3500

4000

4500

nvme raid6 4+2 EC 10+2 EC 5+1

CP
U

 u
til

iza
tio

n
%

Th
ro

up
hp

ut
 in

 M
B/

s

protection scheme

BW vs cpu%, iosize=4MB
Seq Wr in 4MB cpu-s% cpu%

2095

998

3214
3438

12.2

28.8
25.5

28.3

0.0

10.0

20.0

30.0

40.0

50.0

60.0

0

500

1000

1500

2000

2500

3000

3500

4000

4500

nvme raid6 4+2 EC 10+2 EC 5+1

CP
U

 u
til

iza
tio

n
%

Th
ro

up
hp

ut
 in

 M
B/

s

protection scheme

BW vs cpu%, iosize=2MB
Seq Wr in 2MB cpu-s% cpu%

19 | ©2022 Samsung Electronics. All Rights Reserved.

Lustre Object Store: Legacy Backend Storage Target
 Two Object Store Target Reference Designs
 both OST design s are based on local file system

 LDISKFS based on EXT4, with patches to kernel driver
 ZFS is file system combined with LVM + RAID all-in-one

 Storage 101: File System vs Object Storage
 File System: hierarchical w/ strict relationship to each other, human friendly
 Object Store: unstructured, independent, scalable, best example: AWS S3
 use File System as Object Store, not as scalable or performant

 Issue #2: both OSTs are based on legacy LFS
 both designed for HDD era, no optimized for SSDs

 metadata and user data mixed in on-disk LFS format
 metadata are treated equally, same as regular user data

20 | ©2022 Samsung Electronics. All Rights Reserved.

Modern Object Store Design with Metadata in PMEM
Emerging SCM Persistent Memory was unimagined two decades ago
 Optane memory offers persistency over DRAM with10x higher capacity
 Optane memory is 10x slower than DRAM, but
 Optane memory is 100x faster than SSDs

Proposal #2: native Object Store + metadata in PMEM
 OST should be based on truly native Object Store design

 OSS objects independent, not to suffer from unnecessary File System inherent constraints

OST Metadata should be treated as first class citizen, differentiated
 New OSS can enjoy the following benefits from modern SCM

 Metadata operates at memory speed, instead of that of slower SSDs
 SSDs be dedicated to large Sequential I/Os, in MBs for most HPC workload

 SSD sustains at peak performance, without disturbance of small random I/O’s

 Bonus: separate metadata can be replicated to remote backup

22 | ©2022 Samsung Electronics. All Rights Reserved.

Lustre Components: All as Linux Kernel Module
Major 20+ components implemented in kernel modules
 fitting choice at the time when Lustre first designed

 to avoid context switch: I/Os performed all in kernel on OSS/MDS
 kernel mode disadvantages at modern era

 kernel I/O SW stack overhead too high for modern SSDs vs SPDK
 time consuming: inefficient, less productive process than user mode
 $$$: much more expensive dev resource, much smaller talent pool
 Hardest: LDISKFS is patch to various Ext4 release, a Moving target

 Issue #3: the worst limiting factor today to Lustre project
 definitely not agile, likely the reason Lustre is losing its appeal

 Proposal #3: Object Store Server implementation in User-Space
 User-mode, prevailing model of programming in era of Solid State & PMEM

 SPDK, PMDK, along with RDMA
 Benefits: Low latency, agile process and higher productivity, larger developer talent pool

Module Module_Description
lite Lustre Client File System
lmv Lustre Logical Metadata Volume
lod Lustre Logical Object Device (LUSTRE_LOD_NAME"
lov Lustre Logical Object Volume

mdc Lustre Metadata Client
mdd Lustre Meta-data Device Driver (LUSTRE_MDD_NA
mdt Lustre Metadata Target (LUSTRE_MDT_NAME")"
mgc Lustre Management Client
mgs Lustre Management Server (MGS)

obdclass "Lustre Class Driver"
ofd Lustre Object Filtering Device
osc Lustre Object Storage Client (OSC)

osd-ldiskfs Lustre Object Storage Device LDISKFS
osd-zfs Lustre Object Storage Device ZFS

osp "Lustre OSD Storage Proxy ("LUSTRE_OSP_NAME")
ost Lustre Object Storage Target (OST)
gss Lustre GSS security policy

ptlrpc Lustre Request Processor and Lock Management

23 | ©2022 Samsung Electronics. All Rights Reserved.

Object Store Server Modern Design
The proposal detail

24 | ©2022 Samsung Electronics. All Rights Reserved.

Object Store Service + Target Backend Storage Subsystem

KVCS server

Object Store Service

Target Backend Storage Subsystem

Lustre Portal RPC

LNet: TCP/RDMA

DaTa API

Object Index
Engine:
Metadata
in P-Memory

Object Data
Storage Engine:
Erasure Coding
across K/V Stores

K/V stores K/V stores

Buffer Mgr

Transaction MgrLock Mgr

Recovery Mgr

OSD API Dispatch

I/O Mgr

Start/Shutdown

Thread Mgr

K/V stores

Cache Mgr

25 | ©2022 Samsung Electronics. All Rights Reserved.

Engineering Strategy for POC
 Strategy for development work is to reuse

 existing resources as much as possible
 Porting Infrastructure layer from existing Lustre codebase

 Obviously, to keep compatible we have to follow the exact protocol on the wire
 00 Network Transport: LNet module, starting from TCP and RDMA, using libfabric
 01 Lustre Protocol interface: Portal RPC to make procedure calls between servers and clients
 02 maintain representation identical for common base objects/structures: e.g. obd class

 Implementing Core Functions of new Object Store Service & Target in user-mode
 2012 Lustre OSD API spec by Intel Lustre team (now DAOS) when working on ZFS OST

 grateful for the extremely helpful API document!
 The purpose was to “create many possibilities,

including using Object Store Devices or other
new persistent storage technologies”

 made easy for future OSS project like ours!

No Module Functional

00 Networking LNet: TCP, RDMA

01 Infrastructure: portal RPC Lustre protocol interface

02 Internal Lustre base: Lustre device base object Ops: OBD APIs

03 Functional API: OSS/OST Lustre DaTa APIs: …

26 | ©2022 Samsung Electronics. All Rights Reserved.

Object Store Service Core Functions: DaTa APIs
 Implementing Core Functions for new Object Store Service & Target
 Lustre Object Store Service + Target in user mode process
 Third OSS/OST option, after LDISKFS and ZFS

 Leveraging: many existing Open Source projects
 Metadata: Object Indexing K/V Store: B+Tree or Hash
 KV-Store as OST internal object store

 Samsung KVCS x86 host based, high performance (FMS’22)
 Samsung K/V SSDs as candidate, if capacity oriented

 Data Redundancy: Jerasure or other EC libraries
 PMDK and SPDK: directly/indirectly
 RDMA: OFED release
 Development languages

 mix & match with more productive modern choices

N
o

Module Functional

03 Functional API:
OSS/OST

DaTa APIs:

00/10: Reply/Punch
01/02: GetAttr/SetAttr
03/04: Read/Write
05/06: Create/Destroy
07/17: GetInfo/SetInfo
08/09: Connect/Disconnect
11/12: Open/Close
13/16: StatFS/Sync
18/19/20: Quota
21/22: LAdvise/Fallocate
23: Seek

27 | ©2022 Samsung Electronics. All Rights Reserved.

Object Store Backend Storage Subsystem Requirements
 DaTa Object Types (inode per FID)

 regular objects: unstructured data (file/objects)
 index objects: key/values pairs (directories, quota, FLDB)

 DaTa Object Operations
 Core: create/destroy/manipulate object attributes
 Data: to access object body: read/write/truncate/punch
 Index ops: to access index objects as key-value pairs

 Key requirements for storage backend
 transaction commit

 atomic, consistent, durable, callback
 object attributes

 POSIX attributes
 user id, group id, access mode, time, size

 Extended Attributes
 efficient indexing for index objects

 efficient retrieval
 efficient random lookup
 iteration with ordering, restart from cursor

 quota

No Module Functional

04 OST Object Indexing (inode)
(persistent memory)

OST metadata mgmt via K/V Store (B+tree)
FID -> object lookup/manipulate

05 Index Object Access
(persistent memory)

Index Access: internal key/value mgmt

06 Data Object I/O Access Data Access: Read/write/truncate/punch

07 Data Redundancy Data distribution:
object mapping: data to Objects sent to K/V stores

08 Algorithm Libraries CRUSH, Erasure Coding

28 | ©2022 Samsung Electronics. All Rights Reserved.

Benefits and Impact
The Potential

29 | ©2022 Samsung Electronics. All Rights Reserved.

Potential Benefits: Performance and Project Impact
 POC status & goals
 after high-level designing, entering early phase development
 100% compatible with MDS/client, OSS/OST drop-in replacement
 push HW limit and to fully leverage SSD bandwidth potential

 Expected benefits: improved I/O performance
 lower latency from metadata in PMEM
 lower latency from service running in user mode
 higher bandwidth: without RAID HBA

 Erasure Coding + Object Store
 back of envelope estimate on HW potential per cpu

 Future Impact
 pave the road to improve critical Lustre metadata

 similarly, MDT in PMEM and MDS service in user-mode
 open door to further innovations

 e.g. further improve Lustre Metadata scalability
 lower engineering barrier to attract more talented developers, innovative contributions

0.0

5.0

10.0

15.0

20.0

25.0

30.0

25.0 25.6

12.4
11.0

7.0

3.5

28.0Bandwidth ladder in GB

200G IB HDR/cpu DDR-4/ch Optane-Rd/ch Optane-Wr/ch

NVMe-Rd/x4 NVMe-Wr/x4 8x NVMe-Wr/x4

30 | ©2022 Samsung Electronics. All Rights Reserved.

Summary
The take-away

31 | ©2022 Samsung Electronics. All Rights Reserved.

Summary
 Introduced the Lustre architecture
 Presented more background of HPC storage
 Discussed the design of existing OSS/OST and

Identified the challenges & limitations in Lustre and proposed solutions
 RAID based vs Erasure Coding + Object Stores based
 HDD era local file system based OST vs native Object Store + metadata all-in-PMEM
 kernel mode modules vs server service all-in-user-mode

 Previewed the design of the proposed modern OSS/OST
 Discussed potential benefits and future impact
 to improve I/O performance in both BW and latency to fully utilize SSD potential
 to lower engineering barrier to attract more innovative contribution
 to invigorate Lustre developer community

32 | ©2022 Samsung Electronics. All Rights Reserved.

Acknowledgements
 Los Alamos National Laboratory
 Qing Zheng, Scientist, Ph.D. from PDL of Carnegie Mellon University

 Iowa State University, Data Storage Lab
 Runzhou Han, Prof. Mai Zheng

 Samsung Electronics, DSA - Product Planning
 Young Paik

 Samsung Electronics, SAIT - System Architecture Lab
 Robert Wisniewski, Ph.D., David Lombard, Rolf Riesen, Ph.D.

 Samsung Electronics, SAIT - Neural Processing Lab
 Joseph Hassoun, James Loo

 Intel project teams on Lustre (then) and DAOS (now)
 Johann Lombardi

33 | ©2022 Samsung Electronics. All Rights Reserved.

Collaboration, Partnership and More
Existing collaborators from academia and national labs
 Iowa State University/DSL, Los Alamos NL, Lawrence Berkeley NL

 Looking for more partners from open-source communities
 contributing or early adoption, test pilot

QR-Code (top R) to connect/follow-up on LinkedIn
 https://www.linkedin.com/in/yong-chen-783317

QR-Code (below L) We Samsung are hiring! for Storage and HPC
 https://boards.greenhouse.io/samsungsemiconductor/jobs/5298364003 [NPL/SAL]

 Locations: Silicon Valley, CA preferred; Seattle, WA;
Asia or Europe possible

34 | ©2022 Samsung Electronics. All Rights Reserved.

Q & A
The discussion

35 | ©2022 Samsung Electronics. All Rights Reserved.

Please take a moment to rate this session.
Your feedback is important to us.

36 | ©2022 Samsung Electronics. All Rights Reserved.

Backup
More discussion

37 | ©2022 Samsung Electronics. All Rights Reserved.

Object Store vs Key-Value Store
 Take-away: K/V Store is the building blocks (devices) of Object Store
 Conceptually similarity: Val:= GET(key); PUT(key,val),

 K/V Store: for developer, internal device level with formal specification
 Object Store: end products that human end users can use and interact with,

 Object: modifiable, appendable
 K/V Value: complete, limited-size, not immutable

 sample K/V Stores: memcached/redis, LevelDB/RockDB, SNIA K/V Spec
 device or system: compliant to SNIA K/V Store API: Samsung KVCS or Samsung K/V SSDs

 SNIA References
 Object Storage: Trends, Use Cases, Nov 16, 2021
 The Key to Value, Understanding the NVMe Key-Value Standard, Sept 1, 2020
 Key Value Standardization, SDC Sept 22-23, 2020

	Design Modern Object Store Server�for Lustre File System
	Agenda
	Lustre Architecture
	The Lustre File System
	Lustre System Architecture
	Lustre File vs Object Store Servers/Targets
	Storage in Supercomputing
	Lustre with All-Flash
	Challenges in Distributed File Systems
	Intel DAOS: Distributed Asynchronous Object Storage
	The Case of Forward Looking vs Backward Compatibility
	The Case of Legacy Support: DAOS vs Lustre
	Challenges in Lustre
	RAID The Storage Workhorse
	RAID The Storage Workhorse, but…
	Erasure Coding vs RAID
	Compute Overhead: RAID vs Erasure Coding
	Lustre Object Store: Legacy Backend Storage Target
	Modern Object Store Design with Metadata in PMEM
	Lustre Components: All as Linux Kernel Module
	Object Store Server Modern Design
	Object Store Service + Target Backend Storage Subsystem
	Engineering Strategy for POC
	Object Store Service Core Functions: DaTa APIs
	Object Store Backend Storage Subsystem Requirements
	Benefits and Impact
	Potential Benefits: Performance and Project Impact
	Summary
	Summary
	Acknowledgements
	Collaboration, Partnership and More
	Q & A
	Please take a moment to rate this session.
	Backup
	Object Store vs Key-Value Store

