
1 | ©2022 Storage Networking Industry Association. @2022 Dell Technologies. All Rights Reserved.

A Event

Scaling NVMe over IP
Fabric Security
Claudio DeSanti
Distinguished Engineer
Dell Technologies CTIO Group

2 | ©2022 Storage Networking Industry Association. @2022 Dell Technologies. All Rights Reserved.

Agenda

NVMe Security Functions
DH-HMAC-CHAP Authentication
Authentication Verification Entity (AVE) for DH-HMAC-CHAP
AVE Access and DH-HMAC-CHAP Provisioning

3 | ©2022 Storage Networking Industry Association. @2022 Dell Technologies. All Rights Reserved.

NVMe Security Functions

4 | ©2022 Storage Networking Industry Association. @2022 Dell Technologies. All Rights Reserved.

NVMe Security Functions

Storage security requires two fundamental functions:
 Authentication (i.e., proof of identity of an NVMe entity)
 Secure channel (i.e., integrity and confidentiality of data in flight)

NVMe defined the protocols for these functions
 Authentication: DH-HMAC-CHAP

 In TP 8006, now in NVMe base spec v2.0
 Secure channel: TLS 1.3

 In TP 8011, now in NVMe TCP Transport spec v1.0

How to deploy at scale these protocols?

5 | ©2022 Storage Networking Industry Association. @2022 Dell Technologies. All Rights Reserved.

NVMe-oF Authentication Example

1. A TCP session is established

2. The Connect exchange is performed to set up
NVMe queue and associate host to controller

3. The host performs an authentication transaction
with the controller to authenticate the end-points

4. Queue is ready for subsequent operations

Host Controller

Queue set up

Authentication Transaction

Connect Comm.
Connect Resp.

TCP session establishment

6 | ©2022 Storage Networking Industry Association. @2022 Dell Technologies. All Rights Reserved.

TLS 1.3

Connect Comm.
Connect Resp.

1. A TCP/TLS session negotiation is performed
and a secure channel is established

2. The Connect exchange is performed to set up
NVMe queue and associate host to controller

3. Secure channel and queue are set up, ready
for subsequent operations

Host Controller

Secure channel and queue set up

TCP/TLS secure channel establishment

7 | ©2022 Storage Networking Industry Association. @2022 Dell Technologies. All Rights Reserved.

TLS Credentials
 TLS secure channel for NVMe/TCP is based on pre-shared keys (PSKs)

 In order to authenticate and establish a secure channel between themselves,
two NVMe entities need to know the same PSK

 Each pair of entities require its own PSK
 n2 problem: a fabric with N hosts and M subsystems require N x M PSKs

 Authentication protocols to the rescue
 Upon successful completion of an authentication exchange, the two involved NVMe entities

generate an ephemeral shared session key (i.e., a PSK computed on the fly)
 The TLS negotiation can then be performed using a PSK derived from that shared key
 Implementation result: the TCP connection begins unsecured and then transitions to secured

 Opportunistic TLS
 Reduces the TLS provisioning problem to the DH-HMAC-CHAP provisioning problem

8 | ©2022 Storage Networking Industry Association. @2022 Dell Technologies. All Rights Reserved.

TLS Concatenation

Connect Comm.
Connect Resp.

1. A TCP session is established

2. The Connect exchange is performed to set up
NVMe queue and associate host to controller

3. The host performs an authentication transaction
with the controller, transaction that generates a
pre-shared key PSK between host and controller

4. The pre-shared key PSK is used to perform a TLS
negotiation and to establish a secure channel

5. Secure channel and queue are set up, ready for
subsequent operations

Host Controller

Secure channel and queue set up

Authentication Transaction generating a PSK

TLS secure channel establishment using the PSK

TCP session establishment

9 | ©2022 Storage Networking Industry Association. @2022 Dell Technologies. All Rights Reserved.

DH-HMAC-CHAP Authentication

10 | ©2022 Storage Networking Industry Association. @2022 Dell Technologies. All Rights Reserved.

DH-HMAC-CHAP Authentication
 An NVMe entity (Host or Subsystem) is provisioned with a key
 DH-HMAC-CHAP authentication: demonstrate that you know your key

 A controller authenticates a host if the host demonstrates it knows its own key (Kh)
 A host authenticates a controller if the controller demonstrates it knows its own key (Kc)

 DH-HMAC-CHAP demonstration of key knowledge: challenge/response protocol
 The key is not passed in the protocol messages
 The authenticator sends a challenge C
 The responder computes a response using its own key

 i.e., R = HMAC(keyresponder, C || other things)
 The authenticator verifies the response

 DH-HMAC-CHAP response verification: requires the key of the responder
 The authenticator computes the expected response R’
 And verifies if the received R is equal to the computed R’

11 | ©2022 Storage Networking Industry Association. @2022 Dell Technologies. All Rights Reserved.

DH-HMAC-CHAP (1)
Host Controller

My key: Kh
Verification key: KcKeys provisioning

My key: Kc
Verification key: Kh

12 | ©2022 Storage Networking Industry Association. @2022 Dell Technologies. All Rights Reserved.

DH-HMAC-CHAP (2)

AUTH_Negotiate
(T_ID, SC_C, AuthID, HashIDList, DHgIDList)

DH-HMAC-CHAP_Challenge
(T_ID, HashID, DHgID, S1, C1, gx mod p)

DH-HMAC-CHAP_Reply
(T_ID, R1, gy mod p, [S2, C2])

Host Controller
My key: Kh
Verification key: KcKeys provisioning

My key: Kc
Verification key: Kh Computation

Verification

KS = H((gy mod p)x mod p)
Ca1 = (DHgID == 0) ? C1 : HMAC(KS, C1)
R1’ = HMAC(Kh, Ca1 || S1 || T_ID || SC_C

|| “HostHost” || NQNh || 00h || NQNc)
Success1 = (R1 == R1’) ? YES : NO

KS = H((gx mod p)y mod p)
Ca1 = (DHgID == 0) ? C1 : HMAC(KS, C1)
R1 = HMAC(Kh, Ca1 || S1 || T_ID || SC_C

|| “HostHost” || NQNh || 00h || NQNc)

13 | ©2022 Storage Networking Industry Association. @2022 Dell Technologies. All Rights Reserved.

DH-HMAC-CHAP (3)

AUTH_Negotiate
(T_ID, SC_C, AuthID, HashIDList, DHgIDList)

DH-HMAC-CHAP_Challenge
(T_ID, HashID, DHgID, S1, C1, gx mod p)

DH-HMAC-CHAP_Reply
(T_ID, R1, gy mod p, [S2, C2])

DH-HMAC-CHAP_Success1
(T_ID, [R2])

Host Controller

[DH-HMAC-CHAP_Success2]
(T_ID)

My key: Kh
Verification key: KcKeys provisioning

My key: Kc
Verification key: Kh

KS = H((gy mod p)x mod p)
Ca2 = (DHgID == 0) ? C2 : HMAC(KS, C2)
R2 = HMAC(Kc, Ca2 || S2 || T_ID || SC_C

|| “Controller” || NQNc || 00h || NQNh)

KS = H((gy mod p)x mod p)
Ca1 = (DHgID == 0) ? C1 : HMAC(KS, C1)
R1’ = HMAC(Kh, Ca1 || S1 || T_ID || SC_C

|| “HostHost” || NQNh || 00h || NQNc)
Success1 = (R1 == R1’) ? YES : NO

Computation

Verification

KS = H((gx mod p)y mod p)
Ca1 = (DHgID == 0) ? C1 : HMAC(KS, C1)
R1 = HMAC(Kh, Ca1 || S1 || T_ID || SC_C

|| “HostHost” || NQNh || 00h || NQNc)

KS = H((gx mod p)y mod p)
Ca2 = (DHgID == 0) ? C2 : HMAC(KS, C2)
R2’ = HMAC(Kc, Ca2 || S2 || T_ID || SC_C

|| “Controller” || NQNc || 00h || NQNh)
Success2 = (R2 == R2’) ? YES : NO

14 | ©2022 Storage Networking Industry Association. @2022 Dell Technologies. All Rights Reserved.

Subsystem Provisioning

 For subsystem S1:
 Computation key: KS1

 Host verification keys:
 {NQNH1, KH1}
 {NQNH2, KH2}
 {NQNH3, KH3}
 {NQNH4, KH4}
 …
 {NQNHn, KHn}

 Similar configuration for
other subsystems

Subsys S2

Host H1 Host H4Host H2 Host H3

Subsys S3 Subsys S4
Subsys SmSubsys S1

Host Hn
…

…

15 | ©2022 Storage Networking Industry Association. @2022 Dell Technologies. All Rights Reserved.

Host Provisioning

 For host H1:
 Computation key: KH1

 Subsystem verification
keys:
 {NQNS1, KS1}
 {NQNS2, KS2}
 {NQNS3, KS3}
 {NQNS4, KS4}
 …
 {NQNSm, KSm}

 Similar configuration for
other hosts

Subsys S2

Host H1 Host H4Host H2 Host H3

Subsys S3 Subsys S4
Subsys SmSubsys S1

Host Hn
…

…

16 | ©2022 Storage Networking Industry Association. @2022 Dell Technologies. All Rights Reserved.

DH-HMAC-CHAP Provisioning Scaling Example

 Let’s consider a fabric with 100 hosts and 25 subsystems
 Suppose all hosts want to authenticate all subsystems

 Initial host provisioning:
 Each host needs to be provisioned with its own key and the 25 subsystem verification keys

 Subsystem addition to the fabric:
 All 100 hosts needs to be re-provisioned to add the additional subsystem verification key

 Initial subsystem provisioning:
 Each subsystem needs to be provisioned with its own key and the 100 host verification keys

 Host addition to the fabric:
 All 25 subsystems needs to be re-provisioned to add the additional host verification key

 In other words: plain DH-HMAC-CHAP authentication is difficult to deploy

17 | ©2022 Storage Networking Industry Association. @2022 Dell Technologies. All Rights Reserved.

Authentication Verification Entity (AVE)
for DH-HMAC-CHAP

18 | ©2022 Storage Networking Industry Association. @2022 Dell Technologies. All Rights Reserved.

Authentication Verification Entity (AVE)

 An offload of the verification
processing through a
complete database of
{NQN, Key} records
 {NQNH1, KH1}
 {NQNH2, KH2}
 {NQNH3, KH3}
 {NQNH4, KH4}
 …
 {NQNHn, KHn}

 {NQNS1, KS1}
 {NQNS2, KS2}
 {NQNS3, KS3}
 {NQNS4, KS4}
 …
 {NQNSm, KSm} Subsys S2

Host H1 Host H4Host H2 Host H3

Subsys S3 Subsys S4
Subsys SmSubsys S1

Host Hn
…

…

AVE

19 | ©2022 Storage Networking Industry Association. @2022 Dell Technologies. All Rights Reserved.

DH-HMAC-CHAP Authentication with AVE
 An NVMe entity (Host or Subsystem) and the AVE are provisioned with a key
 DH-HMAC-CHAP authentication: demonstrate that you know your key

 A controller authenticates a host if the host demonstrates it knows its own key (Kh)
 A host authenticates a controller if the controller demonstrates it knows its own key (Kc)

 DH-HMAC-CHAP demonstration of key knowledge: challenge/response protocol
 The key is not passed in the protocol messages
 The authenticator sends a challenge C
 The responder computes a response using its own key

 i.e., R = HMAC(keyresponder, C || other things)
 The authenticator verifies the response

 DH-HMAC-CHAP response verification: delegated to the AVE
 Consistent with the RADIUS model for iSCSI CHAP authentication
 Requires secure access to the AVE

 E.g., TLS with PSK

20 | ©2022 Storage Networking Industry Association. @2022 Dell Technologies. All Rights Reserved.

DH-HMAC-CHAP with AVE (1)
Host Controller

My key: Kh
AVE access

My key: Kc
AVE accessKeys provisioning

21 | ©2022 Storage Networking Industry Association. @2022 Dell Technologies. All Rights Reserved.

KS = H((gy mod p)x mod p)
Ca1 = (DHgID == 0) ? C1 : HMAC(KS, C1)
R1’ = HMAC(Kh, Ca1 || S1 || T_ID || SC_C

|| “HostHost” || NQNh || 00h || NQNc)
Success1 = (R1 == R1’) ? YES : NO

DH-HMAC-CHAP with AVE (2)

AUTH_Negotiate
(T_ID, SC_C, AuthID, HashIDList, DHgIDList)

DH-HMAC-CHAP_Challenge
(T_ID, HashID, DHgID, S1, C1, gx mod p)

DH-HMAC-CHAP_Reply
(T_ID, R1, gy mod p, [S2, C2])

Host Controller
My key: Kh
AVE access

My key: Kc
AVE access Computation

Verification

KS = H((gy mod p)x mod p)
Ca1 = (DHgID == 0) ? C1 : HMAC(KS, C1)
Request AVE to verify: {Host NQNh, T_ID,
SC_C, HashID, S1, Ca1, NQNc, R1}
Success1 = returned by AVE

KS = H((gx mod p)y mod p)
Ca1 = (DHgID == 0) ? C1 : HMAC(KS, C1)
R1 = HMAC(Kh, Ca1 || S1 || T_ID || SC_C

|| “HostHost” || NQNh || 00h || NQNc)

AVE processing:
Lookup Kh from NQNh
R1’ = HMAC(Kh, Ca1 || S1 || T_ID || SC_C

|| “HostHost” || NQNh || 00h || NQNc)
Success1 = (R1 == R1’) ? YES : NO

AVE
{NQNh, Kh}

Keys provisioning

22 | ©2022 Storage Networking Industry Association. @2022 Dell Technologies. All Rights Reserved.

KS = H((gx mod p)y mod p)
Ca2 = (DHgID == 0) ? C2 : HMAC(KS, C2)
R2’ = HMAC(Kc, Ca2 || S2 || T_ID || SC_C

|| “Controller” || NQNc || 00h || NQNh)
Success2 = (R2 == R2’) ? YES : NO

DH-HMAC-CHAP with AVE (3)

AUTH_Negotiate
(T_ID, SC_C, AuthID, HashIDList, DHgIDList)

DH-HMAC-CHAP_Challenge
(T_ID, HashID, DHgID, S1, C1, gx mod p)

DH-HMAC-CHAP_Reply
(T_ID, R1, gy mod p, [S2, C2])

DH-HMAC-CHAP_Success1
(T_ID, [R2])

Host Controller

[DH-HMAC-CHAP_Success2]
(T_ID)

My key: Kh
AVE accessKeys provisioning

My key: Kc
AVE access

KS = H((gy mod p)x mod p)
Ca2 = (DHgID == 0) ? C2 : HMAC(KS, C2)
R2 = HMAC(Kc, Ca2 || S2 || T_ID || SC_C

|| “Controller” || NQNc || 00h || NQNh)

KS = H((gx mod p)y mod p)
Ca2 = (DHgID == 0) ? C2 : HMAC(KS, C2)
Request AVE to verify: {Contr. NQNc, T_ID,
SC_C, HashID, S2, Ca2, NQNh, R2}
Success2 = returned by AVE

KS = H((gy mod p)x mod p)
Ca1 = (DHgID == 0) ? C1 : HMAC(KS, C1)
Request AVE to verify: {Host NQNh, T_ID,
SC_C, HashID, S1, Ca1, NQNc, R1}
Success1 = returned by AVE

KS = H((gx mod p)y mod p)
Ca1 = (DHgID == 0) ? C1 : HMAC(KS, C1)
R1 = HMAC(Kh, Ca1 || S1 || T_ID || SC_C

|| “HostHost” || NQNh || 00h || NQNc)

Computation

VerificationAVE processing:
Lookup Kc from NQNc
R2’ = HMAC(Kc, Ca2 || S2 || T_ID || SC_C

|| “Controller” || NQNc || 00h || NQNh)
Success2 = (R2 == R2’) ? YES : NO

AVE
{NQNc, Kc}

23 | ©2022 Storage Networking Industry Association. @2022 Dell Technologies. All Rights Reserved.

AVE

Subsystem Provisioning with AVE

 For subsystem S1:
 Computation key: KS1

 AVE access
 Subsystem provisioning

completely independent
from hosts provisioning
 Subsystem configuration

is simplified even if hosts
do not use the AVE

 Similar configuration for
other subsystems

Subsys S2

Host H1 Host H4Host H2 Host H3

Subsys S3 Subsys S4
Subsys SmSubsys S1

Host Hn
…

…

24 | ©2022 Storage Networking Industry Association. @2022 Dell Technologies. All Rights Reserved.

AVE

Host Provisioning with AVE

 For host H1:
 Computation key: KH1

 AVE access
 Host provisioning completely

independent from
subsystems provisioning
 Host configuration is

simplified even if
subsystems do not use AVE

 Similar configuration for other
hosts

Subsys S2

Host H1 Host H4Host H2 Host H3

Subsys S3 Subsys S4
Subsys SmSubsys S1

Host Hn
…

…

25 | ©2022 Storage Networking Industry Association. @2022 Dell Technologies. All Rights Reserved.

DH-HMAC-CHAP with AVE Provisioning Scaling Example

 Let’s consider a fabric with 100 hosts and 25 subsystems
 Suppose all hosts want to authenticate all subsystems

 Initial host provisioning:
 Each host needs to be provisioned with its own key and the access to the AVE

 Subsystem addition to the fabric:
 No need to touch any host, just add the additional subsystem key to the AVE

 Initial subsystem provisioning:
 Each subsystem needs to be provisioned with its own key and the access to the AVE

 Host addition to the fabric:
 No need to touch any subsystem, just add the additional host key to the AVE no need to touch any

subsystem, just add the additional host key to the AVE

26 | ©2022 Storage Networking Industry Association. @2022 Dell Technologies. All Rights Reserved.

Provisioning Scaling Comparison
 Let’s consider a fabric with 100 hosts and 25 subsystems

 Suppose all hosts want to authenticate all subsystems

 Initial host provisioning:
 Plain DH-HMAC-CHAP: each host needs to be provisioned with its own key and the 25 subsystem verification keys
 DH-HMAC-CHAP + AVE: each host needs to be provisioned with its own key and the access to the AVE

 Subsystem addition to the fabric:
 Plain DH-HMAC-CHAP: all 100 hosts needs to be re-provisioned to add the additional subsystem verification key
 DH-HMAC-CHAP + AVE: no need to touch any host, just add the additional subsystem key to the AVE

 Initial subsystem provisioning:
 Plain DH-HMAC-CHAP: each subsystem needs to be provisioned with its own key and the 100 host verification keys
 DH-HMAC-CHAP + AVE: each subsystem needs to be provisioned with its own key and the access to the AVE

 Host addition to the fabric:
 Plain DH-HMAC-CHAP: all 25 subsystems needs to be re-provisioned to add the additional host verification key
 DH-HMAC-CHAP + AVE: no need to touch any subsystem, just add the additional host key to the AVE

 In other words: An Authentication Verification Entity makes DH-HMAC-CHAP provisioning scalable

27 | ©2022 Storage Networking Industry Association. @2022 Dell Technologies. All Rights Reserved.

Ideal Fabric Authentication Provisioning

 Ideal characteristics:
 Minimal initial provisioning
 No need for endpoint provisioning updates when the fabric change

 e.g., a subsystem is added or a host is added
 Consistent behavior

 i.e., independence from other entities
 Automated

 Manage security through a protocol rather than by requiring specialized skills

 Resulting deployment model:
Provision authentication once and forget about it
 DH-HMAC-CHAP with AVE has these characteristics

28 | ©2022 Storage Networking Industry Association. @2022 Dell Technologies. All Rights Reserved.

AVE Access and
DH-HMAC-CHAP Provisioning

29 | ©2022 Storage Networking Industry Association. @2022 Dell Technologies. All Rights Reserved.

AVE Access Protocol

Subsystem AVE

Same protocol
TP 8011

User-mode process
performing the TLS

handshake, including
key exchange

User Space

DH-HMAC-CHAP
function

Kernel TLS function

Kernel Space NVMe driver

 The communication between
host/controller and AVE needs to
be authenticated and protected
 Only authenticated and

authorized entities shall be
allowed to access the AVE

 Integrity and confidentiality
are required to protect the
information exchanged

 Reuse the NVMe TLS
specification
 Enables kernel

implementation
 Identifies the AVE

with an NQN (NQNAVE)

30 | ©2022 Storage Networking Industry Association. @2022 Dell Technologies. All Rights Reserved.

Provisioning of DH-HMAC-CHAP and AVE

 For an NVMe entity (host or controller) having NQNe as NQN:
 Generate a random DH-HMAC-CHAP key, Ke

 Generate a random TLS PSK to connect with the AVE, PSKea

 Add to the AVE database the record {NQNe, Ke, PSKea}
 Provision {Ke, PSKea, NQNAVE} to the NVMe-oF entity

31 | ©2022 Storage Networking Industry Association. @2022 Dell Technologies. All Rights Reserved.

Eample of DH-HMAC-CHAP with AVE
Host (NQNh) Controller (NQNc) AVE (NQNAVE)

Establish TLS channel with PSKca

Establish TLS channel with PSKha

TCP session establishment

Access-Request
Access-Result

Access-Request
Access-Result

Auth_Negotiate

DH-HMAC-CHAP_Challenge

DH-HMAC-CHAP_Reply

DH-HMAC-CHAP_Success1

DH-HMAC-CHAP_Success2

Add {NQNc, Kc, PSKca}Add {Kc, PSKca, NQNAVE}

Add {NQNh, Kh, PSKha}Add {Kh, PSKha, NQNAVE}
Keys provisioning

N hosts, M controllers:
- N + M keys
- N + M PSKs
- N x M authentications

Linear number of keys,
not quadratic

NVMe-oF Connect

DH-HMAC-CHAP between
host and controller

Provisioning one
DHHC secret

enables an arbitrary
number of

authentications

32 | ©2022 Storage Networking Industry Association. @2022 Dell Technologies. All Rights Reserved.

Provisioning one
DHHC secret

enables an arbitrary
number of

authentications

DH-HMAC-CHAP between
host and controller

Concatenating TLS to DH-HMAC-CHAP with AVE
Host (NQNh) Controller (NQNc) AVE (NQNAVE)

Establish TLS channel with PSKca

Establish TLS channel with PSKha

TCP session establishment

Access-Request
Access-Result

Access-Request
Access-Result

Auth_Negotiate

DH-HMAC-CHAP_Challenge

DH-HMAC-CHAP_Reply

DH-HMAC-CHAP_Success1

DH-HMAC-CHAP_Success2

Add {NQNc, Kc, PSKca}Add {Kc, PSKca, NQNAVE}

Add {NQNh, Kh, PSKha}Add {Kh, PSKha, NQNAVE}
Keys provisioning

N hosts, M controllers:
- N + M keys
- N + M PSKs
- N x M authentications

Linear number of keys,
not quadratic

NVMe-oF Connect

DH-HMAC-CHAP between host
and controller admin queue

generating a session key

TLS channel establishment on admin queue

TLS channel establishment on I/O queue #1

TLS channel establishment on I/O queue #n

Provisioning one
DHHC secret

enables an arbitrary
number of TLS

channels

33 | ©2022 Storage Networking Industry Association. @2022 Dell Technologies. All Rights Reserved.

Summary

Provisioning of the current NVMe security protocols does not scale
 TLS requires provisioning one PSK per each pair of entity of an NVMe fabric
 Plain DH-HMAC-CHAP requires provisioning verification keys

Adding the DH-HMAC-CHAP Authentication Verification Entity (AVE)
to the NVMe architecture makes provisioning those protocol scalable
 Enables “provision authentication once and forget about it”
 It is being worked out in TP 8019

34 | ©2022 Storage Networking Industry Association. @2022 Dell Technologies. All Rights Reserved.

Please take a moment to rate this session.
Your feedback is important to us.

35 | ©2022 Storage Networking Industry Association. @2022 Dell Technologies. All Rights Reserved.

Heterogeneous Configuration: Host Provisioning

 Host H1: No AVE
 Computation key: KH1

 Subsystem verification keys:
 {NQNS1, KS1}
 {NQNS2, KS2}
 {NQNS3, KS3}
 {NQNS4, KS4}
 …
 {NQNSm, KSm}

 Same for hosts not using AVE
 Host Hn: AVE

 Computation key: KHn

 AVE access
 Same for hosts using AVE

Subsys S2

Host H1 Host H4Host H2 Host H3

Subsys S3 Subsys S4
Subsys SmSubsys S1

Host Hn
…

…

AVE

36 | ©2022 Storage Networking Industry Association. @2022 Dell Technologies. All Rights Reserved.

Heterogeneous Configuration: Subsystem Provisioning

 Subsystem S1: no AVE
 Computation key: KS1

 Host verification keys:
 {NQNH1, KH1}
 {NQNH2, KH2}
 {NQNH3, KH3}
 {NQNH4, KH4}
 …
 {NQNHn, KHn}

 Same for subsystems not
using AVE

 Subsystem Sm: AVE
 Computation key: KSm

 AVE access
 Same for subsystems using

AVE Subsys S2

Host H1 Host H4Host H2 Host H3

Subsys S3 Subsys S4
Subsys SmSubsys S1

Host Hn
…

…

AVE

	Scaling NVMe over IP Fabric Security
	Agenda
	NVMe Security Functions
	NVMe Security Functions
	NVMe-oF Authentication Example
	TLS 1.3
	TLS Credentials
	TLS Concatenation
	DH-HMAC-CHAP Authentication
	DH-HMAC-CHAP Authentication
	DH-HMAC-CHAP (1)
	DH-HMAC-CHAP (2)
	DH-HMAC-CHAP (3)
	Subsystem Provisioning
	Host Provisioning
	DH-HMAC-CHAP Provisioning Scaling Example
	Authentication Verification Entity (AVE) �for DH-HMAC-CHAP
	Authentication Verification Entity (AVE)
	DH-HMAC-CHAP Authentication with AVE
	DH-HMAC-CHAP with AVE (1)
	DH-HMAC-CHAP with AVE (2)
	DH-HMAC-CHAP with AVE (3)
	Subsystem Provisioning with AVE
	Host Provisioning with AVE
	DH-HMAC-CHAP with AVE Provisioning Scaling Example
	Provisioning Scaling Comparison
	Ideal Fabric Authentication Provisioning
	AVE Access and �DH-HMAC-CHAP Provisioning
	AVE Access Protocol
	Provisioning of DH-HMAC-CHAP and AVE
	Eample of DH-HMAC-CHAP with AVE
	Concatenating TLS to DH-HMAC-CHAP with AVE
	Summary
	Please take a moment to rate this session.
	Heterogeneous Configuration: Host Provisioning
	Heterogeneous Configuration: Subsystem Provisioning

