
1 | ©2022 2Misses Corporation. All Rights Reserved.

A Event

Challenges and Opportunities in
Developing a Hash Table
Optimized for Persistent Memory

New paradigms for a new storage technology

Steve Heller

2 | ©2022 2Misses Corporation ©. All Rights Reserved.

Why yet another hash table/KV
store?
Compare and contrast with existing technology

2 | ©2022 2Misses Corporation ©. All Rights Reserved.

3 | ©2022 2Misses Corporation ©. All Rights Reserved.3 | ©2022 2Misses Corporation ©. All Rights Reserved.

Feature TwoMisses unordered_map open addressing redis

Variable-length? Yes Yes No Yes

Persistent? Optional No Maybe Optional
Performance
guarantees? 1 or 2 random accesses Asymptotic 1 random access No

Incremental rehash? Yes No Maybe Yes
Storage efficiency Good Low Best Low
Power-fail
consistency Optional No No Optional

Embedded/server Embedded Embedded Embedded Server

Threading Single Single Single Multiple

Processing model

Algorithm name

Sheet1

		Algorithm name

		Feature		TwoMisses		unordered_map		open addressing		redis

		Variable-length?		Yes		Yes		No		Yes

		Persistent?		Optional		No		Maybe		Optional

		Performance guarantees?		1 or 2 random accesses		Asymptotic		1 random access		No

		Incremental rehash?		Yes		No		Maybe		Yes

		Storage efficiency		Good		Low		Best		Low

		Power-fail consistency		Optional		No		No		Optional

		Processing model

		Embedded/server		Embedded		Embedded		Embedded		Server

		Threading		Single		Single		Single		Multiple

4 | ©2022 2Misses Corporation. All Rights Reserved.

When would you choose the TwoMisses hash table?

You are currently using or are considering unordered_map or a similar
node-based hash table because you need variable-length capabilities,
and any of the following are true:

1. You want better storage efficiency and/or better speed than these
other algorithms.

2. You want incremental rehashing rather than a big-bang rehash.
3. You want the option to persist your data across program termination.

5 | ©2022 2Misses Corporation. All Rights Reserved.

When would you not use TwoMisses?

If any of the following are true, the TwoMisses hash table is not for you:

1. You want multi-user operation via threading.
2. You want a server-based system rather than embedded.
3. You want an open-source solution.

6 | ©2022 2Misses Corporation ©. All Rights Reserved.6 | ©2022 2Misses Corporation ©. All Rights Reserved.

Approaching the theoretical minimum latency for a hash
table stored on persistent memory

7 | ©2022 2Misses Corporation. All Rights Reserved.

What is the minimum access latency of a persistent hash table?

 At least one random access to the underlying memory or storage is needed
to retrieve a record from any hash table, assuming reasonably uniform
access.

 For fixed-length records, there is a well-known solution that achieves this
minimum: open addressing.

 For variable-length records, no such solution has existed. Instead, pointers
have been required, resulting in a minimum of two random accesses.

 The new TwoMisses heterogeneous hash table achieves the theoretically
optimal limit of one random access to retrieve a “short” variable-length
record, i.e., a record less than a configurable size such as 40 bytes of key +
data. For longer records, this hash table requires exactly two random
accesses.

8 | ©2022 2Misses Corporation. All Rights Reserved.

How the new 2Misses heterogeneous hash table works
 Instead of dividing the table into fixed-size record locations, the table

is divided into “tranches” of a fixed size larger than any “direct” record
that will be stored in the table itself; longer records will use indirection.

 When calculating a record location, the hashing algorithm must
generate the address of the start of one of these tranches.

 Once the tranche address has been determined, the contents of that
tranche are parsed. The beginning of a tranche containing two “direct”
records might look like this:

Byte Byte Byte Multibyte
s

Multibyte
sRecord

type
Key
length

Value
length

Key….. Value…..

Byte Byte Byte Multibyte
s

Multibyte
sRecord

type
Key
length

Value
length

Key….. Value…..

9 | ©2022 2Misses Corporation. All Rights Reserved.

Storing a record
 First the record size is compared to the “direct” record length limit. If it

is within that limit, the record will be stored in the table itself.
Otherwise, the record data is stored in an “overflow file” and an
“indirect” record pointing to that storage is created to be stored in the
table.

 Then the size of the record to be stored in the table is compared to
the remaining empty space in the tranche. If there is enough space to
add the record, it is added, possibly at the end of the tranche.

 Otherwise, sequential collision resolution is employed to locate a
tranche containing enough free space to store the record. No further
random accesses within the table will be required.

10 | ©2022 2Misses Corporation. All Rights Reserved.

Rehashing

 When storing a record, if the algorithm determines that the file is
nearly at its capacity, a rehashing round is scheduled to begin.

 Each round relocates records to different locations in the table, which
grows in the process. This is generally done in an incremental way so
as not to cause a prolonged service outage; the overflow file is not
reorganized in this operation.

11 | ©2022 2Misses Corporation. All Rights Reserved.

Looking up a record
 The target tranche is searched to determine whether the record is

present.
 If so, a reference to the record data is returned; otherwise, an

algorithm compatible with the collision resolution method used for
storing a record is used to determine whether it might be in another
tranche. If so, the search continues; otherwise, the search is
terminated with the status “not found”.

 Since this algorithm makes exactly one random access to the table
itself and one optional additional random access to access data in the
“overflow file” for indirect records, the maximum number of random
accesses to retrieve any record by key is two.

12 | ©2022 2Misses Corporation ©. All Rights Reserved.12 | ©2022 2Misses Corporation ©. All Rights Reserved.

Some of the challenges
“We’re not in Kansas anymore.”

13 | ©2022 2Misses Corporation. All Rights Reserved.

For a hash table stored on persistent memory, which of these
statements can be relied on?

 It doesn’t matter which CPU socket your program runs on.
 Running in a Hyper-V Windows VM slows the program down by ~10x.
 Running in a Hyper-V Ubuntu VM slows the program down by ~10x.
 Retrieval speeds are reduced after the file is rehashed.
 Reading during rehashing is much slower.
 If you have an integer key, there will be no significant performance

penalty for using a bitmap to keep track of the existence of billions of
records.

14 | ©2022 2Misses Corporation. All Rights Reserved.

None of the previous statements is reliably true.

 A round trip over the socket interconnect (UPI) costs on the order of
200 nanoseconds, lengthening overall latency by about 30%.

 Running in a Hyper-V Windows VM or an Ubuntu VM can have about
a 15% performance penalty, possibly partially due to inefficient
placement of vCPUs.

 Retrieval latency is not necessarily increased after rehashing.
 Reading while rehashing can be as fast as when not rehashing.
 Using a bitmap to keep track of the existence of billions of records can

reduce performance by about 15%.

15 | ©2022 2Misses Corporation. All Rights Reserved.

Some general rules to live by for optimal results

 Do not employ large auxiliary data structures (exceeding cache size).
 Do not make system calls in the hot path.
 Avoid dynamic memory allocation in the hot path; e.g., return the

actual memory-mapped record data rather than making a copy.
 Avoid unnecessary object creation, even on the stack, in the hot path.
 Minimize UPI traffic to the extent possible.

16 | ©2022 2Misses Corporation. All Rights Reserved.

Implementation implications of the general rules

 Since large auxiliary data structures cause excessive page table
lookups in the virtual memory system, a directoryless structure is
required for best performance.

 Since system calls are slow compared to persistent memory access,
normal multithreading techniques, e.g., using std::thread, are not
feasible. Just one sync call to synchronize data between threads can
take longer than retrieving a record from the hash table.

17 | ©2022 2Misses Corporation. All Rights Reserved.

Effects of the rules on the API

 The 2Misses hash table has two interfaces, a simple one that looks like a
C++ unordered_map, and an advanced one for performance.

 The unordered_map type interface returns a std::string, which requires a
heap memory allocation and later deallocation. In addition, modifying the
value requires a new lookup in order to write the new value to the table.

 The advanced interface doesn’t make a copy but returns a C++ object
similar to a string_view, containing a pointer to the persistent memory
address of the record, and a length. This avoids heap memory usage.

 This interface also allows update-in-place if the value length does not
change, eliminating the second lookup to update the value.

18 | ©2022 2Misses Corporation. All Rights Reserved.

Other API considerations

 The algorithm can move records around any time there is an add or a
delete operation, not just during rehashing. For this reason, no existing
reference to a record can be considered valid after adding a new
record, deleting a record, or replacing a record with a value of different
length. Updating a record in place or replacing a value with a new
value of the same length does not invalidate existing record
references.

 Iterators must also be considered invalid after the same operations
that invalidate existing record references.

19 | ©2022 2Misses Corporation ©. All Rights Reserved.19 | ©2022 2Misses Corporation ©. All Rights Reserved.

What is the payoff for following
this new paradigm?
Let’s see some actual performance numbers

20 | ©2022 2Misses Corporation. All Rights Reserved.

 Retrieving ~1 million “short records” (averaging 8 byte keys/8 byte values) per
second, 95th percentile retrieval/update latency ~1.6 microseconds.

 Retrieving >600k “medium records” (averaging 10 byte keys/100 byte values) per
second, 95th percentile retrieval/update latency ~2.4 microseconds.

 Adding new records, while not rehashing, is about 50% faster than retrieving.
 Above results gathered at 1 billion record file size, flat through tens of billions of

records.
 Test results from dual Xeon 2nd Gen 4215, 128GB DRAM, 2 TB Intel® Optane™

DC Persistent Memory, Windows 10. Ubuntu implementation is generally a few
percent faster.

Test results from a C++ implementation on previous-generation
hardware where the hash table is on persistent memory

21 | ©2022 2Misses Corporation. All Rights Reserved.

 Retrieving ~1 million “short records” (averaging 8 byte keys/8 byte values)
per second, 95th percentile retrieval/update latency ~1.6 microseconds.

 Retrieving >700k “medium records” (averaging 10 byte keys/100 byte
values) per second, 95th percentile retrieval/update latency ~2.4
microseconds.

 Adding new records, while not rehashing, is about 50% faster than
retrieving.

 Above results gathered at 1 billion record file size, flat through tens of
billions of records.

 Test results from dual Xeon 3rd Gen Gold 6326, 256GB DRAM, 4 TB Intel®
Optane™ DC Persistent Memory Series 200, Windows 10.

Test results from a C++ implementation on latest-generation
hardware where the hash table is on persistent memory

22 | ©2022 2Misses Corporation. All Rights Reserved.

 Retrieving ~1.6 million “short records” (averaging 8 byte keys/8 byte values)
per second, 95th percentile retrieval/update latency ~0.8 microseconds.

 Retrieving ~1 million “medium records” (averaging 10 byte keys/100 byte
values) per second, 95th percentile retrieval/update latency ~1.5
microseconds.

 Adding new records, while not rehashing, is slightly faster than retrieving.
 Short record speeds tested at 4 billion record count, medium records at 500

million record count, both limited by DRAM.
 Test results from dual Xeon 2nd Gen 4215, 128GB DRAM, Windows 10.

Test results from a C++ implementation on previous-generation
hardware where the hash table is cached in memory

23 | ©2022 2Misses Corporation. All Rights Reserved.

 Retrieving ~1.8 million “short records” (averaging 8 byte keys/8 byte values)
per second, 95th percentile retrieval/update latency ~0.75 microseconds.

 Retrieving ~1 million “medium records” (averaging 10 byte keys/100 byte
values) per second, 95th percentile retrieval/update latency ~1.5
microseconds.

 Adding new records, while not rehashing, is slightly faster than retrieving.
 Short record speeds tested at 9 billion record count, medium records at 1

billion record count, both limited by DRAM.
 Test results from dual Xeon 3rd Gen Gold 6326, 256GB DRAM, Windows

10.

Test results from a C++ implementation on latest-generation
hardware where the hash table is cached in memory

24 | ©2022 2Misses Corporation ©. All Rights Reserved.24 | ©2022 2Misses Corporation ©. All Rights Reserved.

How close is this to the
theoretical limit?

25 | ©2022 2Misses Corporation. All Rights Reserved.

 With short records, averaging 8-byte keys and 8-byte values, the Visual
Studio profiler indicates that about 50% of the time is spent reading and
writing. As a sanity check, the average total latency is about 1000
nanoseconds and one persistent memory random access takes ~350
nanoseconds, so we are at least within a factor of 3 of the theoretical limit.

 With medium records, averaging 10-byte keys and 100-byte values, the
Visual Studio profiler indicates that about 70% of the time is spent reading
and writing. As a sanity check, the average total latency is about 1500
nanoseconds and even a (hypothetical) algorithm that requires only one
persistent memory random access would take a minimum of ~350
nanoseconds, so we are within a factor of 4 of the theoretical limit.

Theory vs. practice for variable-length records, 50% read/50%
update on persistent memory with previous-generation server

26 | ©2022 2Misses Corporation ©. All Rights Reserved.26 | ©2022 2Misses Corporation ©. All Rights Reserved.

Is this algorithm applicable to
DRAM or SSD storage?

27 | ©2022 2Misses Corporation. All Rights Reserved.

When the hash table is stored entirely in DRAM, the speeds will be
comparable to those shown above for a DRAM-cached memory-
mapped hash table, although startup and shutdown delays are
minimized for the DRAM-only version. Of course, without some
persistence mechanism, e.g., battery or supercapacitor, persistence
features will be unavailable.

Applicability to DRAM

28 | ©2022 2Misses Corporation. All Rights Reserved.

One would expect that SSD performance will not be of the same order
of magnitude as with DRAM or persistent memory, as even the fastest
SSD has random access times of 5-10 microseconds, at least 10x that
of persistent memory.
However, it is possible to split the hash table into multiple shards that do
not have to coordinate with one another very closely, thus allowing a
type of multiprocessing that does not limit performance as a standard
multithreading approach would. With this in mind, how much throughput
can we achieve with an SSD?

Applicability to SSD storage

29 | ©2022 2Misses Corporation ©. All Rights Reserved.29 | ©2022 2Misses Corporation ©. All Rights Reserved.

Test results from a
multiprocessing C++
implementation on SSD

30 | ©2022 2Misses Corporation. All Rights Reserved.

15B records, total
storage 300 GB

Operation
Optane SSD, old server,
16 shards

Samsung SSD, new server,
32 shards Dapustor SSD, new server, 32 shards

Read a billion records in
original order after 4-
minute warmup 1703K 6100K 6027K
Overall throughput in
same order at 1800
seconds 1228K 3353K 3110k
Overall throughput in
different order at 1800
seconds 129K 101K 139K

Variable-length key/value averaging 8 bytes each, 100% Read, 32K tranches

30B records, total storage 580 GB

Sheet1

				Variable-length key/value averaging 8 bytes each, 100% Read, 32K tranches

				15B records, total storage 300 GB		30B records, total storage 580 GB

		Operation		Optane SSD, old server, 16 shards		Samsung SSD, new server, 32 shards		Dapustor SSD, new server, 32 shards

		Read a billion records in original order after 4-minute warmup		1703K		6100K		6027K

		Overall throughput in same order at 1800 seconds		1228K		3353K		3110k

		Overall throughput in different order at 1800 seconds		129K		101K		139K

31 | ©2022 2Misses Corporation. All Rights Reserved.

15B records, total
storage 300 GB

Operation
Optane SSD, old server,
16 shards

Samsung SSD, new server,
32 shards Dapustor SSD, new server, 32 shards

Read a billion records in
original order after 4-
minute warmup 1309K 5695K 4193K
Overall throughput in
same order at 1800
seconds 1004K 2775K 2383K
Overall throughput in
different order at 1800
seconds

~108K (anomalous
behavior filtered out) 95K 129K

Variable-length key/value averaging 8 bytes each, 50/50 Read/update, 32K tranches

30B records, total storage 580 GB

Sheet1

				Variable-length key/value averaging 8 bytes each, 50/50 Read/update, 32K tranches

				15B records, total storage 300 GB		30B records, total storage 580 GB

		Operation		Optane SSD, old server, 16 shards		Samsung SSD, new server, 32 shards		Dapustor SSD, new server, 32 shards

		Read a billion records in original order after 4-minute warmup		1309K		5695K		4193K

		Overall throughput in same order at 1800 seconds		1004K		2775K		2383K

		Overall throughput in different order at 1800 seconds		~108K (anomalous behavior filtered out)		95K		129K

32 | ©2022 2Misses Corporation. All Rights Reserved.

The Samsung 980 Pro can at least hold its own in most speed
comparisons with the Dapustor data-center-oriented drive. Of course the
Samsung does not have the endurance claimed by the Dapustor so it
would not be appropriate for heavy write loads.
Large (32K) tranches provide much better performance on SSD, even for
short records, than small (256B) tranches, in contrast to Optane
Persistent Memory or DRAM, where small tranches are much faster.
Records up to the tranche size limit can be retrieved with exactly one
random access, which is the maximum possible performance achievable
with any algorithm.

Comments on SSD performance results

33 | ©2022 2Misses Corporation. All Rights Reserved.

The most unexpected result of these tests was that accessing hash table
entries in the order in which they were stored on an SSD improved
retrieval/update speed by a factor of from 10x to 30x or more.
This was surprising to me because the logical locations where the
records are stored are scattered as evenly as possible throughout the
file. My error was in not taking into consideration the Flash Translation
Layer, which implies that if the SSD is empty when the file is constructed,
direct records will likely be stored in physical sequential order, resulting
in sequential-level performance when rereading those records in the
same order.

Comments on SSD performance results, part 2

34 | ©2022 2Misses Corporation ©. All Rights Reserved.34 | ©2022 2Misses Corporation ©. All Rights Reserved.

What about computational
storage?

35 | ©2022 2Misses Corporation. All Rights Reserved.

Computational storage is an ideal application for this new hash table
because it is directoryless. This means that a table of any size can be
accessed optimally without being limited by the size of available DRAM in
the SSD or HDD computational storage controller.
The ability to read records back at millions of transactions per second
when done in the same order as the records were stored may also have
significant benefits for computational storage.

Applicability to computational storage

36 | ©2022 2Misses Corporation ©. All Rights Reserved.36 | ©2022 2Misses Corporation ©. All Rights Reserved.

Notes

37 | ©2022 2Misses Corporation. All Rights Reserved.

1. For a more detailed description of an earlier implementation of the
heterogeneous hash table described here, see US Patent
#11,254,590; other US and foreign patents pending.

2. The reason that it’s impossible to be more specific about VM overhead
is that there doesn’t seem to be a way to specify which socket to use
for vCPUs, at least on Hyper-V. Thus, the program could be running
on a socket with a longer path to persistent memory, requiring a
round-trip over the UPI for each persistent memory access.

Notes

38 | ©2022 2Misses Corporation. All Rights Reserved.

3. While Windows results are consistent with the theoretical performance
hit due to running the program on the “wrong” socket, for some reason
this effect isn’t reproducible in a native Ubuntu installation.

4. “One random access to the table” doesn’t mean that only one random
access to memory is occurring during the lookup. With random access
to very large memory maps, the TLB (translation lookaside buffer) is
being repopulated for virtually every user memory access request.
This can take several additional random memory accesses to page
table structures with 4K pages, typical in Windows. Setting
“transparent huge pages” on Ubuntu reduces this overhead by
mapping larger sections of memory for each page table entry.

Notes, continued

39 | ©2022 2Misses Corporation. All Rights Reserved.

You can contact me at sheller@2misses.com for documentation including
more detailed performance results.

See www.2misses.com for the latest updates, including the user manual.

To learn more

mailto:sheller@2misses.com
http://www.2misses.com/

40 | ©2022 2Misses Corporation. All Rights Reserved.

Please take a moment to rate this session.
Your feedback is important to us.

	Challenges and Opportunities in Developing a Hash Table Optimized for Persistent Memory�
	Why yet another hash table/KV store?
	Slide Number 3
	When would you choose the TwoMisses hash table?
	When would you not use TwoMisses?
	The opportunity
	What is the minimum access latency of a persistent hash table?
	How the new 2Misses heterogeneous hash table works
	Storing a record
	Rehashing
	Looking up a record
	Some of the challenges
	For a hash table stored on persistent memory, which of these statements can be relied on?
	None of the previous statements is reliably true.
	Some general rules to live by for optimal results
	Implementation implications of the general rules
	Effects of the rules on the API
	Other API considerations
	What is the payoff for following this new paradigm?
	Test results from a C++ implementation on previous-generation hardware where the hash table is on persistent memory
	Test results from a C++ implementation on latest-generation hardware where the hash table is on persistent memory
	Test results from a C++ implementation on previous-generation hardware where the hash table is cached in memory
	Test results from a C++ implementation on latest-generation hardware where the hash table is cached in memory
	How close is this to the theoretical limit?
	Theory vs. practice for variable-length records, 50% read/50% update on persistent memory with previous-generation server
	Is this algorithm applicable to�DRAM or SSD storage?
	Applicability to DRAM
	Applicability to SSD storage
	Test results from a multiprocessing C++ implementation on SSD
	Slide Number 30
	Slide Number 31
	Comments on SSD performance results
	Comments on SSD performance results, part 2
	What about computational storage?
	Applicability to computational storage
	Notes
	Notes
	Notes, continued
	To learn more
	Please take a moment to rate this session.

