
1 Slide Template and Design ©2022 Storage Networking Industry Association. All Rights Reserved.
Slide Content ©2022 Seagate Technologies, Inc. All rights Reserved.

A Event

HDD Computational Storage
Benchmarking
A Journey into Instruction per Cycle

Presented by Philip Kufeldt, Seagate Technologies

2 Slide Template and Design ©2022 Storage Networking Industry Association. All Rights Reserved.
Slide Content ©2022 Seagate Technologies, Inc. All rights Reserved.

Who Am I

Philip Kufeldt, Technologist @ Seagate Technology
 Focused on HDD Computational Storage research
 Direct external research projects for Seagate

 Human Cell Atlas (HCA) with UCSC
 Campaign Storage 2.0 with LANL

 I am NOT a CPU architecture expert
 I did re-read my Hennessy and Patterson though (circa 1990)

 Although Seagate is an ARM licensee, I have not had access to ARM licensee
information
 Everything in this presentation comes from public sources or experiments

3 Slide Template and Design ©2022 Storage Networking Industry Association. All Rights Reserved.
Slide Content ©2022 Seagate Technologies, Inc. All rights Reserved.

Envoy Interposer

 Interposer card transforms a SATA HDD into a network attached computational storage device (CSD)
 Hardware

 1GHz Cortex A53 ArmV8 (Marvell Armada 88F3720)
 2 cores
 32KiB L1 I-cache and D-cache
 256KiB L2 Cache
 Supports SIMD/Neon extensions

 1GiB DDR4 800Mhz 16-bit
 Dual 2.5 Gbps Ethernet interfaces
 128 MiB NOR Flash

 Envoy runs Ubuntu 20.04LTS
 a 5.16 Linux kernel

 Being deployed in HCA and CS2.0 research projects
 computational storage functions will leverage the FPU

Envoy

4 Slide Template and Design ©2022 Storage Networking Industry Association. All Rights Reserved.
Slide Content ©2022 Seagate Technologies, Inc. All rights Reserved.

Standard Benchmarking

 Traditional storage and network benchmarks
 Using fio and iperf3
 No big issues

 However, application performance showed a problem

5 Slide Template and Design ©2022 Storage Networking Industry Association. All Rights Reserved.
Slide Content ©2022 Seagate Technologies, Inc. All rights Reserved.

HCA T-Statistic

 HCA uses a T-Statistic to compare new sample data to existing archived data
 Double precision data is in a matrix and the T-Statistic is calculated across columns
 Computational storage functions performing this on the drive showed significant performance issues

 T-Statistic
 Primary calculations are a running mean, means squares, sample variance and stddev.
 Means and means squares are calculated incrementally across the data

 variance and stddev calculated as a final step outside of main loop
 Algorithm used is Welford’s as presented in Knuth’s Art of Programming, one loop is:

𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛 = 𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛 +
𝐷𝐷𝑛𝑛 −𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛

𝑛𝑛
𝑠𝑠𝑠𝑠𝑠𝑠 = 𝑠𝑠𝑠𝑠𝑠𝑠 + 𝐷𝐷𝑛𝑛 − 𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛 × 𝐷𝐷𝑛𝑛 − 𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛

𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛 = 𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛

Where Dn is column data (e.g. D11) and a separate mean and means squares is calculated per row.

𝐷𝐷11 ⋯ 𝐷𝐷𝑛𝑛1
⋮ ⋮

𝐷𝐷1𝑚𝑚 ⋯ 𝐷𝐷𝑛𝑛𝑚𝑚
→

𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑠𝑠1
⋮

𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑠𝑠𝑚𝑚
and

𝑠𝑠𝑠𝑠𝑠𝑠1
⋮

𝑠𝑠𝑠𝑠𝑠𝑠𝑚𝑚

6 Slide Template and Design ©2022 Storage Networking Industry Association. All Rights Reserved.
Slide Content ©2022 Seagate Technologies, Inc. All rights Reserved.

 A sample program was created to isolate the T-Statistic
calculation and provide a test vehicle
 This program

 allocates a matrix and fills it with in with either zero’s or
random data.

 can set matrix sizes at runtime and perform a configurable
number of calculation runs on the same data

 can set data size
 can set core affinity

 The primary calculation function
 allocates means and squares vectors
 loops over the matrix performing the Welford calculations
 it is single threaded

 This program was constructed such that the compiler’s
optimizer could leverage SIMD FPU units
 AVX/SSE2 on Intel and NEON on ARM.
 Compiled with -O3
 Lessons learned about data layout to leverage gcc’s optimizer

 Resulting data was validated against Excel model

Usage:

Usage: ./accumulate [OPTIONS]

Timed column means and means squares calculations

for a matrix, sized r x c.

Where, OPTIONS are [default]:

-r rows Number of Rows [3]

-c cols Number of Columns [3]

-R runs Number of Runs [3]

-A core # Set the affinity to core [no affinity]

-e Do not fill the matrix with data

-t {i|f|d|s|a} Set datatype to int, float, double,

double SIMD, or double assembler

-v Be verbose

-? Help

Recreation

7 Slide Template and Design ©2022 Storage Networking Industry Association. All Rights Reserved.
Slide Content ©2022 Seagate Technologies, Inc. All rights Reserved.

 A sample program was created to isolate the T-Statistic
calculation and provide a test vehicle
 This program

 allocates a matrix and fills it with in with either zero’s or
random data.

 can set matrix sizes at runtime and perform a configurable
number of calculation runs on the same data

 can set data size
 can set core affinity

 The primary calculation function
 allocates means and squares vectors
 loops over the matrix performing the Welford calculations
 it is single threaded

 This program was constructed such that the compiler’s
optimizer could leverage SIMD FPU units
 AVX/SSE2 on Intel and NEON on ARM.
 Compiled with -O3
 Lessons learned about data layout to leverage gcc’s optimizer

 Resulting data was validated against Excel model

Pseudo Code:

matrix = create_matrix(rows, cols);

means = create_vector(cols);

sqs = create_vector(cols);

// Handle initial column, col0

for (r=0; r<rows, r++) {

means[r] = matrix[0, r];

sqs = 0.0;

}

// Now the rest of the columns

for (c=1; c<cols; c++) {

nc = c + 1; // nc is col # starting from 1

for (r=0; r<rows; r++) {

dmean = (table[c][r] - means[r]);

nmeans = means[r] + (dmean/nc);

sqs[r] = sqs[r] + ((dmean) * (table[c][r] - nmeans));

means[r] = nmeans;

}

}

Recreation

8 Slide Template and Design ©2022 Storage Networking Industry Association. All Rights Reserved.
Slide Content ©2022 Seagate Technologies, Inc. All rights Reserved.

SIMD

D D V1.2D

D D V2.2D

D D V0.2D

D D V0.2D

C Code that Optimizes to SIMD code:
dmean = (double *)malloc(rows*sizeof(double));
nmeans = (double *)malloc(rows*sizeof(double));
means = (double *)malloc(rows*sizeof(double));
vars = (double *)malloc(rows*sizeof(double));

if (!vars || !means || !nmeans || !dmean) {
printf("Alloc failed\n"); return(-1);

}

/* Initialize 1st column */
c=0;
for (r=0; r<rows; r++) {

means[r] = table[c][r];
vars[r] = 0.0;

}
nc = 1;

/* Calulate the running means and variances */
for (c = 1; c<cols; c++) {

nc++;

for (r=0; r<rows; r++) {
dmean[r] = (table[c][r] - means[r]);
nmeans[r] = means[r] + (dmean[r]/nc);

vars[r] = vars[r] + ((dmean[r])*(table[c][r] - nmeans[r]));
means[r] = nmeans[r];

}
}

ARM Neon 128bit FPU registers

⊕

⊗ ⊗

⊕

= =

Single Instruction Multiply and Accumulate MAC

fmla v0.2d, v1.2d, v2.2d

D D V0.2D

S S S S V0.4S

H H H H H H H H V0.8H

B B B B B B B B B B B B B B B B V0.16B
127 64 63 32 31 16 15 8 7 0

Vector Name

128b vectors

9 Slide Template and Design ©2022 Storage Networking Industry Association. All Rights Reserved.
Slide Content ©2022 Seagate Technologies, Inc. All rights Reserved.

Excel Model

Accumulate Data Excel Data Checks

Matrix 4x3 Mean Var Mean Var Mean Var

0.665281 0.118406 0.514532 0.432740 0.079786 0.432740 0.079786 1 1

0.236674 0.418639 0.508930 0.388081 0.019231 0.388081 0.019231 1 1

0.823394 0.395274 0.542889 0.587186 0.047293 0.587186 0.047293 1 1

0.183360 0.482918 0.599430 0.421903 0.046071 0.421903 0.046071 1 1

$./accumulate -c 3 -r 4 -t d -R 1 -v
...
0.665281, 0.118406, 0.514532, 0.432740, 0.079786
0.236674, 0.418639, 0.508930, 0.388081, 0.019231
0.823394, 0.395274, 0.542889, 0.587186, 0.047293
0.183360, 0.482918, 0.599430, 0.421903, 0.046071
...

Cut n Paste

Excel Calculated Values

Quick Checks
(4 digit checks)

10 Slide Template and Design ©2022 Storage Networking Industry Association. All Rights Reserved.
Slide Content ©2022 Seagate Technologies, Inc. All rights Reserved.

 Recreation program used internal Linux clocks to
determine timings for various actions, such as:
 Matrix creation and fill time
 Main means, squares calculations

 Linux perf was used to look at:
 L1 Cache misses - big candidate for perf issues
 Branch misses
 Instructions per cycle

 Runs were done on Xeon-based VMs and Envoy
 Geometry chosen to mimic HCA data sizes ~1MiB

Observations
 𝑇𝑇𝑇𝑇𝑋𝑋𝑋𝑋𝑋𝑋𝑛𝑛 ≈ 𝑇𝑇𝑇𝑇𝐸𝐸𝑛𝑛𝐸𝐸𝑋𝑋𝐸𝐸 × 𝐶𝐶𝐸𝐸𝐶𝐶𝐶𝐶𝑋𝑋𝐶𝐶𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸

𝐶𝐶𝐸𝐸𝐶𝐶𝐶𝐶𝑋𝑋𝐶𝐶𝑋𝑋𝑋𝑋𝐸𝐸𝐸𝐸
× 𝐼𝐼𝑛𝑛𝐶𝐶𝑛𝑛/𝐶𝐶𝐸𝐸𝐶𝐶𝐶𝐶𝑋𝑋𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸

𝐼𝐼𝑛𝑛𝐶𝐶𝑛𝑛/𝐶𝐶𝐸𝐸𝐶𝐶𝐶𝐶𝑋𝑋𝑋𝑋𝑋𝑋𝐸𝐸𝐸𝐸
 Rough approximation

 L1 d-cache and branch misses uninteresting
 Linux perf and internal timings matched

Matrix: 360x360; Runs: 1000; Dataset size: ~1MiB

Analysis

perf stat Xeon Envoy delta

Total Time mS 86 2,126 2,472%

Cycles GHz 4.1 0.98 23.9%

Instructions/cycle 3.57 0.44 12.3%

Branch misses 0.53% 0.66% 124%

L1 d-cache misses 8.13% 0.10% 1.2%

11 Slide Template and Design ©2022 Storage Networking Industry Association. All Rights Reserved.
Slide Content ©2022 Seagate Technologies, Inc. All rights Reserved.

 These significant differences drove a
deeper dive into Envoy
 New calculation routines were created:

 Arm Neon SIMD version
 Explicitly call Neon SIMD primitives

 Arm Assembler version
 mix of C and assembler

 These somewhat excluded the compilers
optimizer from main loop

 Neon version yielded similar results to
standard optimized C
 Generally can’t out optimize the optimizer

 Assembler version was slower
 Used primarily to look at per instruction

slowdowns
 Utilize GCC Extended ASM

Arm64 Neon SIMD Code
float64x2_t tvec, mvec, dvec, nmvec, sqvec, nsqvec, ncvec;

/* Initialize 1st column */
c=0;
for (r=0; r<rows; r++) {

means[r] = table[c][r];
vars[r] = 0.0;

}
nc = 1.0;

/* Calulate the running means and variances */
for (c = 1; c<cols; c++) {

nc++;
ncvec = vdupq_n_f64(nc);
for (r=0; r<rows; r+=2) {

// Load base vectors
tvec = vld1q_f64(&table[c][r]);
mvec = vld1q_f64(&means[r]);
sqvec = vld1q_f64(&vars[r]);

// Calculate dmean and nmean
dmvec = vsubq_f64(tvec, mvec); // dmv=tv-v
nmvec = vdivq_f64(dmvec, ncvec); // nmv=dmv/ncv
nmvec = vaddq_f64(mvec, nmvec); // nmv=mv+nmv

// Calculate nsquares
nsqvec = vsubq_f64(tvec, nmvec); // dvv=tv-nmv
nsqvec = vmlaq_f64(sqvec, nsqvec, dmvec); // nsqv=sqvec+(dvv*dmv)

// Store results
vst1q_f64(&means[r], nmvec);
vst1q_f64(&vars[r], nsqvec);

}
}

Recreation extended

12 Slide Template and Design ©2022 Storage Networking Industry Association. All Rights Reserved.
Slide Content ©2022 Seagate Technologies, Inc. All rights Reserved.

 What is this?
 Support for inline assembly that utilizes C

variables and labels
 Allows the C code generator and optimizer to

work with inline assembly
 How?

 Used for assembly version of my T-Statistic code
 Not going to explore all of the power of extended

ASM
 Find out more here:

GCC Extended ASM

__asm__ asm-qualifiers (AssemblerTemplate
: OutputOperands

[: InputOperands
[: Clobbers
[: GotoLabels]]])

Where,
asm-qualifiers = inline | volatile | goto
AssemblerTemplate = assembly instructions
In/Out Operands = [[asm-name]] constraint (c-expr)
Clobbers = registers | memory
GotoLabels = c-labels

https://gcc.gnu.org/onlinedocs/gcc/Extended-Asm.html

13 Slide Template and Design ©2022 Storage Networking Industry Association. All Rights Reserved.
Slide Content ©2022 Seagate Technologies, Inc. All rights Reserved.

Assembler Code
for (c = 1; c<cols; c++) {

/* optimization: Used in the row loop below */
cspace = c * rows;

/* optimization: setup a dup'ed vect of the num of cols */
nc++; ncvec = vdupq_n_f64(nc);

for (r=0; r<rows; r+=2) {
__asm__ volatile (

/* Register Usage:
* x0-x2 &table[c][r], &means[r], &sqs[r]
* x5-x7 table idx(ti), means idx(mi), sqs idx (vi)
* v10 table[c][r] vector (tv)
* v11 means[r] vector (mv)
* v12 sqs[r] vector (vv)
* v13 delta mean vector (dmv)
* v14 new mean vector (nmv)
* v15 delta var vector (dvv)
* v16 temp var vector (tv)
*
* The formula for the table index is:
* ((c * rows) + r) OR (cspace + r)
*/

/* 1 */ "add x5, %[cspace], %[r]\n\t“ // ti = cspace + r
/* 1 */ "lsl x5, x5, #3\n\t" // ti *= sizeof(double)
/* 1 */ "lsl x6, %[r], #3\n\t" // mi = r*sizeof(double)
/* 1 */ "lsl x7, %[r], #3\n\t" // vi = r*sizeof(double)

/* 1 */ "add x0, x5, %[table]\n\t" // table+mi
/* 1 */ "add x1, x6, %[means]\n\t" // means+mi
/* 1 */ "add x2, x7, %[sqs]\n\t" // sqs+vi

/* 2 */ "ldr q10, [x0]\n\t" // tv = table[c][r,r+1]
/* 3 */ "ldr q11, [x1]\n\t" // mv = means[r,r+1]
/* 4 */ "ldr q12, [x2]\n\t" // vv = sqs[r,r+1]

/* 5 */ "fsub v13.2d, v10.2d, v11.2d\n\t" // dmv=tv-mv
/* 6 */ "fdiv v14.2d, v13.2d, %[ncv].2d\n\t" // nmv=dmv/ncv
/* 7 */ "fadd v14.2d, v11.2d, v14.2d\n\t" // nmv=mv+nmv
/* 8 */ "fsub v15.2d, v10.2d, v14.2d\n\t" // dvv=tv-nmv
/* 9 */ "fmla v12.2d, v15.2d, v13.2d\n\t" // vv+=dvv*dmv
/* 10 */ "str q14, [x1]\n\t" // means[r,r+1] = nmv
/* 11 */ "str q12, [x2]\n\t" // sqs[r,r+1] = vv

"\n\t"
: /* No Output Operands */
: [table] "r" (base_table),

[means] "r" (means),
[sqs] "r" (sqs),
[r] "r" (r),
[cspace] "r" (cspace),
[ncv] "w" (ncvec)

: "x0", "x1", "x2", "x5", "x6", "x7",
"v9", "v10", "v11", "v12", "v13", "v14", "v15", "v16"

);
}

}

Recreation extended

14 Slide Template and Design ©2022 Storage Networking Industry Association. All Rights Reserved.
Slide Content ©2022 Seagate Technologies, Inc. All rights Reserved.

Recreation extended - Assembler Loop

 Permitted a vehicle to isolate pipeline stalls
 By staging in instructions I could see their effect on the instruction per cycle metric.

 Use ifdefs to add stages
 11 stages

 Stage 1 are the first instructions that calculate memory indices, all scalar ALU ops.
 Stages 2-4 are memory access instructions, loads.
 Stages 5-9 are SIMD Vector FPU ops
 Stages 10-11 are memory access instructions, stores.

 After running it on the Envoy, I also had 3 other systems with ARMv8s to compare
against
 4 Core Cortex A53 - Pine Rockpro64 - RK3399*
 16 Core CortexA72 - Solid Run HoneyComb - LX 2160A
 4 Core Cortex A72 - Raspberry Pi - BCM2711

15 Slide Template and Design ©2022 Storage Networking Industry Association. All Rights Reserved.
Slide Content ©2022 Seagate Technologies, Inc. All rights Reserved.

Instruction per Cycle Comparison

• Clear division between A53 and A72
• Memory accesses create the biggest drop for A53

• A72’s actually rise
• Envoy’s 16b DDR bus not the big culprit

• Still a significant drop in the vector ops
• Possibly due to register contention

Observations

Armada RK3399 LX2160A BCM2711
Stage Description Mean Mean Mean Mean

1 Just matrix, means and vars address calculations: ALU Ops 1.61 1.28 1.87 1.58
2 Load matrix 128-bit value into q10: ldr 1.10 1.04 2.00 1.65
3 Load means 128-bit values into q11: ldr 0.83 0.93 2.13 1.70
4 Load vars 128-bit values into q12: ldr 0.42 0.68 2.10 1.70
5 Delta means = table value - means value: fsub 0.47 0.68 2.03 1.65
6 New Means = delta /num cols: fdiv 0.43 0.61 1.70 1.51
7 New Means = new means + means value: fadd 0.30 0.40 1.61 1.46
8 delta vars = table value - new means: fsub 0.30 0.39 1.49 1.39
9 vars = vars + (delta vars * delta means): fmla 0.30 0.38 1.28 1.28

10 Store means results: str 0.30 0.38 1.28 1.27
11 Store vars results: str 0.28 0.36 1.29 1.27

CortexA53 CortexA72
Instruction/cycle

0.00

0.50

1.00

1.50

2.00

2.50

1 2 3 4 5 6 7 8 9 10 11

In
sn

/c
yc

le

Stage

Mean Instruction per Cycle
average over 50 runs

Envoy Cortex A53 Rock64 Cortex A53

LX2160 Cortex A72 RaspPi Cortex A72

16 Slide Template and Design ©2022 Storage Networking Industry Association. All Rights Reserved.
Slide Content ©2022 Seagate Technologies, Inc. All rights Reserved.

Cortex-A53 Pipeline

 2-wide decode, in-order superscalar processor, capable of dual-issuing some instructions

1 2 3 4 5 6 7 8 9 10

W
ri

te
ba

ck

NEON/FP F0

NEON/FP F1 W
ri

te
ba

ck

Is
su

e

ALU/INT (MAC)

ALU/INT (DIV)

Branch

AGU LD/ST

Instruction Fetch

Instruction Queue

D
ec

od
e

Critical components

17 Slide Template and Design ©2022 Storage Networking Industry Association. All Rights Reserved.
Slide Content ©2022 Seagate Technologies, Inc. All rights Reserved.

Cortex-A72 Pipeline

 3-way decode, out-of-order superscalar pipeline

1

Instruction Fetch

2 3 4 5

Decode

6 7 8 9

Dispatch/
Rename

10 11 12 13

InstQ(8)
InstQ (8)

InstQ (8)

InstQ (8)

InstQ (8)

InstQ (10)

InstQ (16)

Simple
Int0

Simple
Int1

MultiCycle Math

NEON FP0

NEON FP1

Branch

AGU LD

AGU ST

14

W
rit

eb
ac

k

15

128 Entry
Reorder Buffer

1 2 3 4 5

18 Slide Template and Design ©2022 Storage Networking Industry Association. All Rights Reserved.
Slide Content ©2022 Seagate Technologies, Inc. All rights Reserved.

Post Script

 Graph was flawed in 2 ways
1. Error in calculating insn/cycle means, not a significant error, but corrected

 Incorrectly init-ed mean to 0 instead of first data point
2. The matrices in the graph were zero filled, effect was significant

 What’s going on here?

versus

19 Slide Template and Design ©2022 Storage Networking Industry Association. All Rights Reserved.
Slide Content ©2022 Seagate Technologies, Inc. All rights Reserved.

Post Script

 Stage 6 is an fdiv
 this is weighting-the-means calculation for the current # of columns

 Looks like FPU has an optimized path for a zero numerator
 Divides are not viewed as important for performance

 FPU divides are always high latency
 Multiply and accumulate (MAC) is the most important
 There may be only one FP unit capable

 Area efficiency issues

 Divides can block/stall the pipeline until complete
 SIMD divides may actually be done serially.

 C optimizers remove divides where possible
 I converted the code to multiply the inverse

20 Slide Template and Design ©2022 Storage Networking Industry Association. All Rights Reserved.
Slide Content ©2022 Seagate Technologies, Inc. All rights Reserved.

Post Script

Valid data chart
 Divide replaced with a multiply of inverse
 Done once per column

ncvec = vdupq_n_f64(nc);

changed to

ncvec = vdupq_n_f64(1.0/nc);

 Further refinement to merge stage 6 and stage 7
 One MAC instruction
 Stage 6 a noop

21 Slide Template and Design ©2022 Storage Networking Industry Association. All Rights Reserved.
Slide Content ©2022 Seagate Technologies, Inc. All rights Reserved.

Post Post Script

 Conversion to from fdiv to fmul allowed another fmla (MAC)
 Welford has two opportunities for fmla

 Decided to quantify the benefit of one fmla vs fmul+fadd across both A53 and A72
 Create binaries with both approaches

 A53 there is no benefit
 indicates fmla implementation is simply fmul+fadd

 A72 gets a 13.0-14.6% bump

22 Slide Template and Design ©2022 Storage Networking Industry Association. All Rights Reserved.
Slide Content ©2022 Seagate Technologies, Inc. All rights Reserved.

Conclusions
 Pipelines are important

 Looking at A53 vs A72
 25x to 6x

 FPU implementations are important
 just because you code a MAC doesn’t mean you get a MAC

 Would like to see slow down limited to <5x
 to make $$ reduction a viable argument

 Need to look at a new Envoy
 A72 or A55
 DDR Bus may not be a critical requirement

Matrix: 360x360; Runs: 1000; Dataset size: ~1MiB

perf stat Xeon Envoy
A53

LX2160
A72

RaspPi
A72

RK3399*
A53/72

Total Time mS 86 2,126 456 524 661

Cycles GHz 4.1 0.98 1.97 1.48 1.39

Instructions/cycle 3.57 0.44 1.03 1.20 0.34

Branch misses 0.53% 0.66% NA NA 16.01%

L1 dcache misses 8.13% 0.10% 0.14% 1.10% 3.19%

*Don’t fully trust RK3399 results

23 Slide Template and Design ©2022 Storage Networking Industry Association. All Rights Reserved.
Slide Content ©2022 Seagate Technologies, Inc. All rights Reserved.

Please take a moment to rate this session.
Your feedback is important to us.

If you have any questions: philip.kufeldt@seagate.com

	HDD Computational Storage�Benchmarking
	Who Am I 	
	Envoy Interposer
	Standard Benchmarking
	HCA T-Statistic
	Recreation
	Recreation
	SIMD
	Excel Model
	Analysis
	Recreation extended
	GCC Extended ASM
	Recreation extended
	Recreation extended - Assembler Loop
	Instruction per Cycle Comparison
	Cortex-A53 Pipeline
	Cortex-A72 Pipeline
	Post Script
	Post Script
	Post Script
	Post Post Script
	Conclusions
	Please take a moment to rate this session.

