STORAGE DEVELOPER CONFERENCE

SD2 Fremont, CA September 12-15, 2022

BY Developers FOR Developers

NVMe[®] Computational Storage

Standardizing offload of computation

Presented by Kim Malone, Intel

Programs as Computational Storage Offloads

Programs:

- Invoked and used in a standard way
 - Conceptually similar to software functions
 - Called with parameters and run to completion
- Operate only on data in Subsystem Local Memory
- Run on compute resources
- May be in hardware or software
 - Device may offer fixed function programs
 - Device may offer downloadable programs
- A program may only be able to execute on a subset of the compute resources in an NVM subsystem

This presentation discusses NVMe[®] technology work in progress, which is subject to change without notice. 2 | ©2022 Storage Networking Industry Association. All Rights Reserved.

Downloadable and device-defined programs

- Support for both device-defined and downloadable programs
- Device-defined programs
 - "Fixed" programs provided by the manufacturer
 - Functionality implemented by the device that are callable as programs
 - e.g. compression, decryption

Downloadable programs

 Programs that are loaded to a Computational Programs namespace by the host

This presentation discusses NVMe [®] technology	work in progress, w	which is subject to change	without notice.
3 ©2022 Storage Networking Industry Association. All Rights	Reserved.		

3		
2		
1	downloaded program	
0	device-defined program	
Programs		

Downloadable Programs

- Why downloadable programs?
 - Flexibility
 - Process complex formats
 - Emerging applications
 - Portability from existing applications
 - Vendor-specific formats or well-known formats (e.g. eBPF)

Example format: eBPF

- Vendor agnostic
- Well understood
- Existing ecosystems, toolchains
- LLVM
- Sits under Linux Foundation

This presentation discusses NVMe[®] technology work in progress, which is subject to change without notice.

Major Architectural Components

The NVMe[®] computational storage architecture involves several types of namespaces:

- Compute namespaces (new)
- Memory namespaces (new)
- NVM namespaces
 - NVM, Zoned, and Key Value namespaces

This presentation discusses NVMe[®] technology work in progress, which is subject to change without notice.

Compute Namespaces

A compute namespace:

- Is a namespace in an NVMe® technology subsystem that is able to execute one or more programs
- May support a subset of all possible program types
- Is a namespace that is associated with the Computational Programs I/O command set
- Programs may access data in one or more memory namespaces

TP4091: Computational Programs

New Computational Programs I/O command set for compute namespaces

- New commands may include:
 - Execute program
 - Load program
 - Activate program
 - Create/Delete Memory Range Set
- Support for Identify Controller, Namespace

This presentation discusses NVMe[®] technology work in progress, which is subject to change without notice.

Memory Namespaces

A memory namespace:

- Is a namespace in an NVMe® technology subsystem that provides host command access to memory in the NVMe® technology subsystem
- Is a namespace that is associated with the Subsystem Local Memory I/O command set
- Is used by the Computational Programs command set to provide access to SLM for program execution

TP4131: Subsystem Local Memory (SLM)

New Subsystem Local Memory I/O command set for memory namespaces

- New commands may include:
 - Commands for reading from a memory namespace into host memory and writing from host memory to a memory namespace
 - Command to allow copying data between NVM and memory namespaces
- Support for Identify Controller, Namespace

Flow: Execute Program – Simple Data Filter

Flow steps

- Copy stored data into subsystem memory
- Execute Program with index 0 on NS 1
- Read filtered data from subsystem memory to host

This presentation discusses NVMe[®] technology work in progress, which is subject to change without notice. 8 | ©2022 Storage Networking Industry Association. All Rights Reserved.

Flow: Execute Program – Filter Encrypted Data

Flow steps

D

- Copy encrypted data into subsystem memory
- B Execute Program 1 on NS 1
- C Execute Program 0 on NS 1

Read filtered data from subsystem memory to host

This presentation discusses NVMe[®] technology work in progress, which is subject to change without notice. 9 | ©2022 Storage Networking Industry Association. All Rights Reserved.

NVM Express® Computational Storage Task Group

- Task Group co-chairs
 - Kim Malone (Intel)
 - Stephen Bates (Eideticom)
 - Bill Martin (Samsung)

Task Group Goals

- Define the architecture of TP4091
- Take TP4091 through to ratification
- Other CS Technical Proposals

JOIN US!

Membership

- 228 members from 49 companies
- Join the task group
 - Go to the NVMe workgroup portal
 - Select the <u>CS Task Group</u>
 - Click on the "Join Group" link
- Task group meetings
 - Thursdays 9 10 am Pacific time

QUESTIONS?

Please take a moment to rate this session.

Your feedback is important to us.

