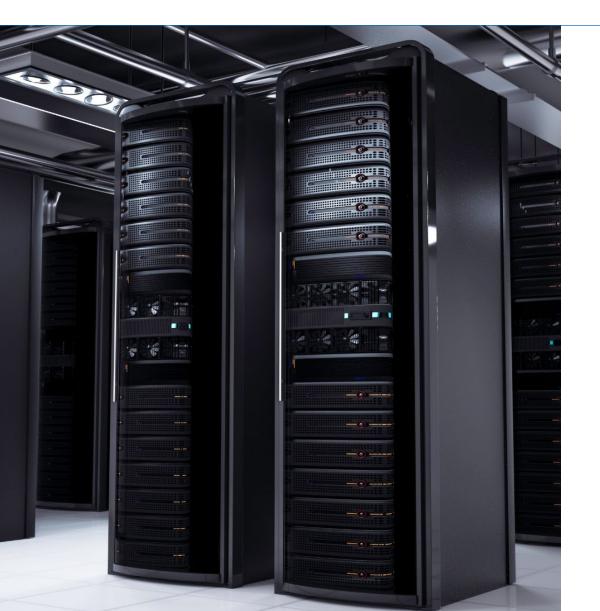
STORAGE DEVELOPER CONFERENCE

SD2 Fremont, CA September 12-15, 2022


BY Developers FOR Developers

Next-Generation Storage Will Use DPUs Instead of CPUs

A SNIA, Event

Jai Menon Chief Scientist

Agenda

DPU Introduction

Fungible Data Processing Unit (DPU)

A DPU-based Storage (DBS) Implementation

Traditional CPU-based Storage (CBS) vs. DBS

2

3

Comparing real-world implementations: CBS vs. Fungible DBS

- Performance •
- Storage efficiency
- Power and Rack Density •

€FUNGIBLE

DPU Introduction

3 | ©2022 Storage Networking Industry Association. All Rights Reserved.

©2022 Fungible, Inc. All Rights Reserved.

DPUs will be an Essential Part of Next-Generation Cloud Data Centers

DPUs Have Emerged to Address Two Data Center Mega-Trends

Rise of Data-Centric Tasks

(general purpose processors are inefficient at this)

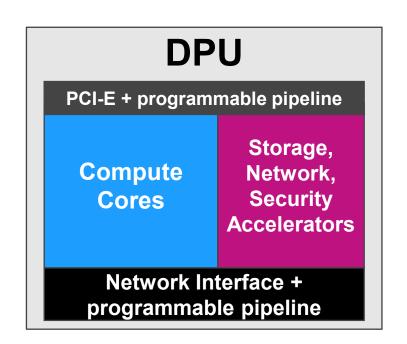
Networking, Storage, Security Big Fast Data, Al/ML, data analytics

DATA - CENTRIC CLOUD

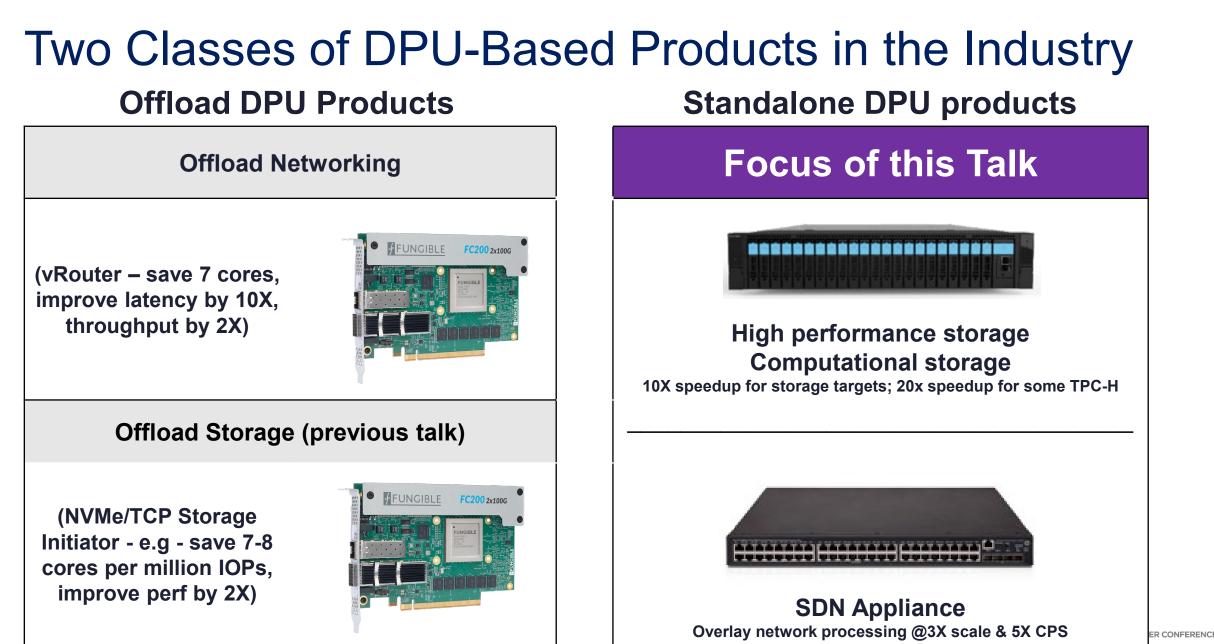
Agility, flexibility, reliability of cloud

2 Data Center Cloudification

(existing data center networks and data center architectures are inefficient at this)


* Stateful processing of multiple high bandwidth streams of packetized data as needed for networking, storage, security, AI/ML

STORAGE DEVELOPER CONFERENCE


4 | ©2022 Storage Networking Industry Association. All Rights Reserved.

What is a DPU?

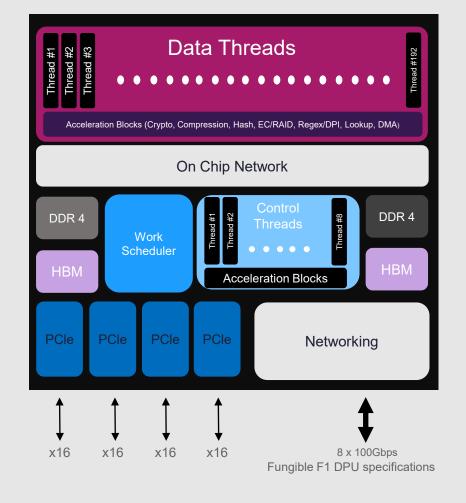
- A DPU or data processing unit is a specialized programmable processor tailored to efficiently execute data-centric tasks
 - they integrate general-purpose cores & h/w accelerators
- Data-centric tasks involve stateful, multiplexed processing of high bandwidth streams of data
 - Storage, network and security processing are datacentric
- DPUs complement CPUs & GPUs and will be a 3rd socket in data centers

SD 2

©2022 Fungible, Inc. All Rights Reserved.

Fungible DPU

Built for Storage



7 | ©2022 Storage Developer Conference ©. All Rights Reserved.

The Fungible DPU is Built for Storage

<u>10x</u> more efficient @ data-centric tasks Implements efficient data center networking

Network

- Efficient TCP
- TrueFabric[™]
- Transit & Endpoint functionality
- P4 programmable Transit Path

Compute

- Scheduling of run to completion handlers
- Interrupt free

PCle

- Expose multiple personalities root complex, end point, switch
- High performance DMA

Specialized memory systems

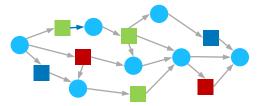
- HBM 8 GB @ 4 Tbps
- Buffer memory for payload
- DDR4 Upto 1 TB@300 Gbps

Specialized Flexible Hardware Accelerators

- EC, compression, regex encryption, Lookup, DMA
- Accessible in 10s of nsecs

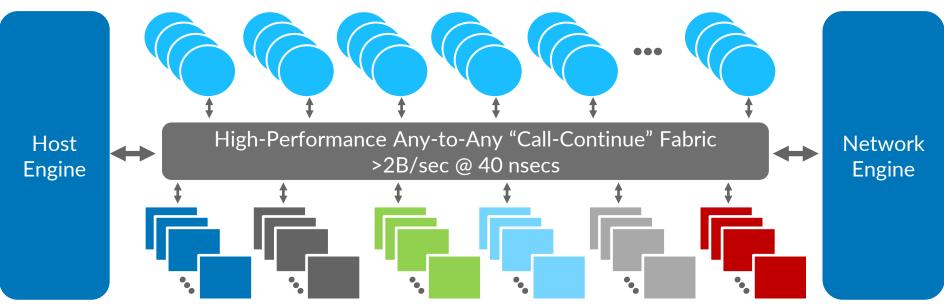
High-Speed Accelerators in the Fungible DPU

Used for Storage Target



ACCELERATOR	F1 DPU
Flexible DMA	4 Tbps
Crypto (AES-GCM/XTS)	1 Tbps
SHA1, 2, 3 Hash	1 Tbps
Lookups (per sec)	320M
Compress/Decompress	512 Gbps
EC/Raid	800 Gbps
Regex Engine	100-400Gbps

9 | ©2022 Storage Networking Industry Association. All Rights Reserved.


High-Performance Programmable Data Path

100s of concurrent active flows

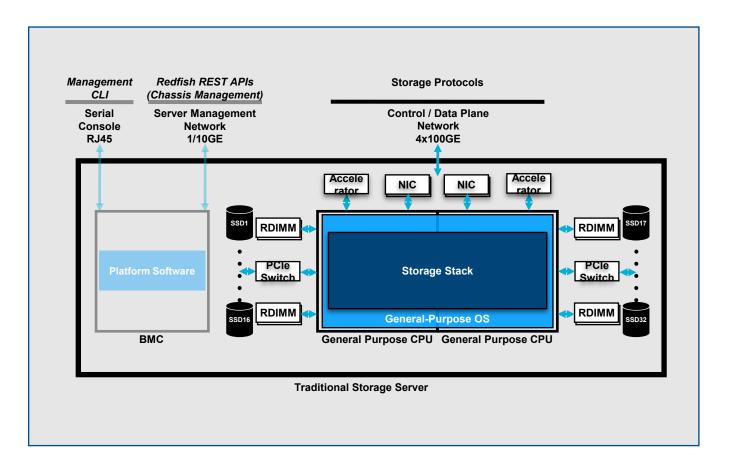
Millions of dormant flows

CPU Threads Execute Run-To-Completion C-Code with flow control

Heterogeneous Accelerator Threads Fungible DPU is unique in the tight coupling of cores to accelerators

♥ FUNGIBLE

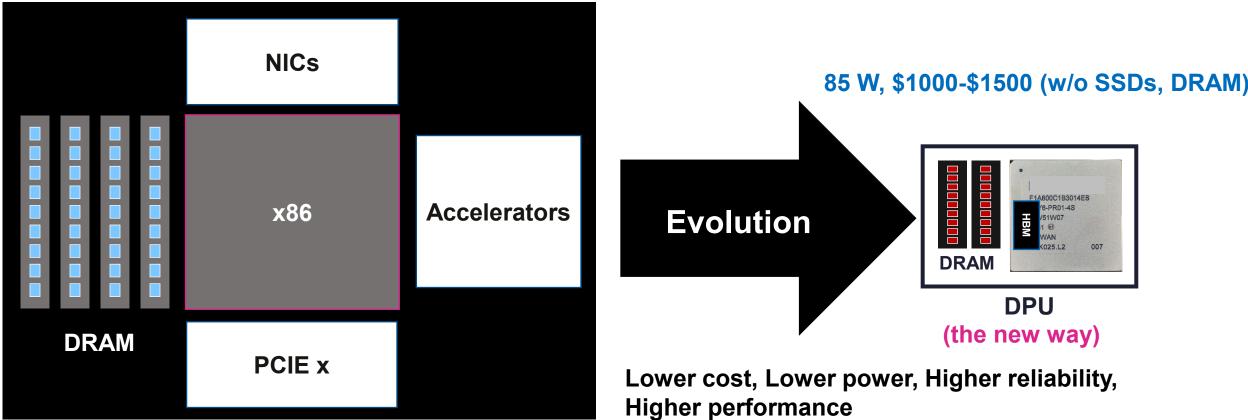
Comparing DPU-based Storage (DBS) and Traditional CPU-Based Storage (CBS) Architectures



11 | ©2022 Storage Developer Conference ©. All Rights Reserved.

Traditional Way to Build Storage (the old way)

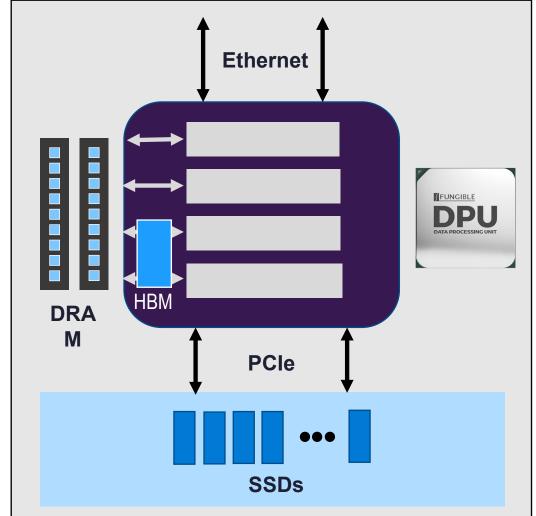
Main Components & Software


- 2 High End x86 Processors
 - General Purpose OS
 - Storage Stack
- Many physical IO devices
 - 4 100Gbps NICs
 - 2 100Gbps Data Security & Data Reduction Accelerators
 - PCIe Switches to connect to many SSDs

The New Way to Build Storage - DPU-Based Storage (DBS)

550 W, \$4000 (without SSDs or DRAM or Accelerators)

Typical CPU Based Storage uses discrete parts (the traditional way)

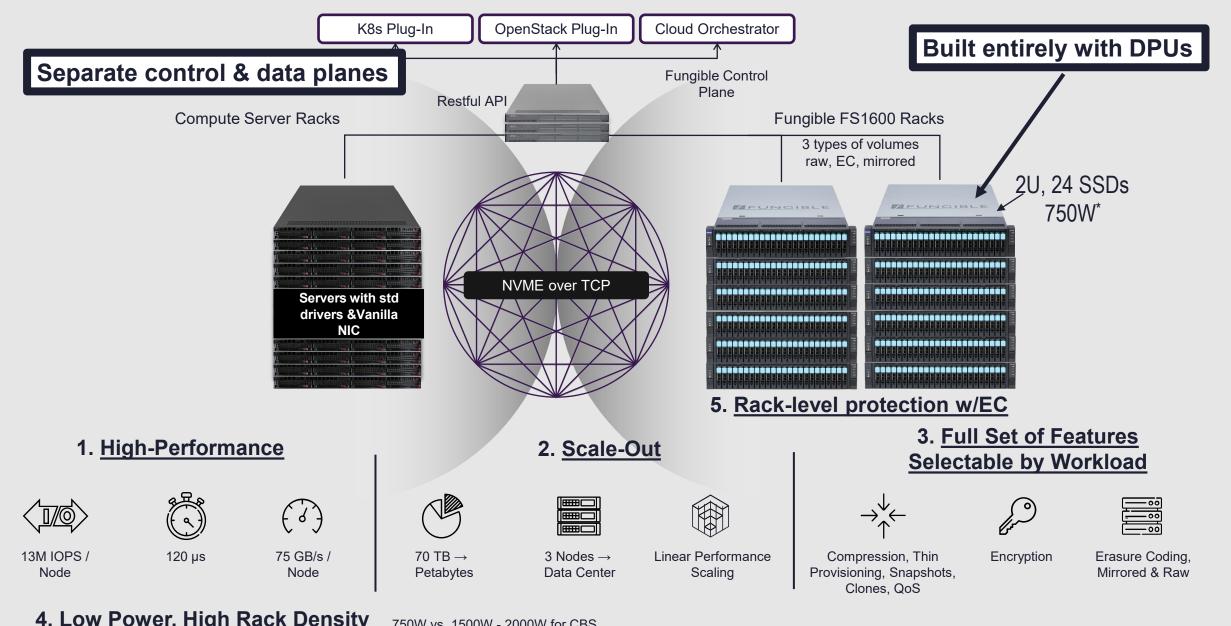

13 | ©2022 Storage Networking Industry Association. All Rights Reserved.

STORAGE DEVELOPER CONFERENCE

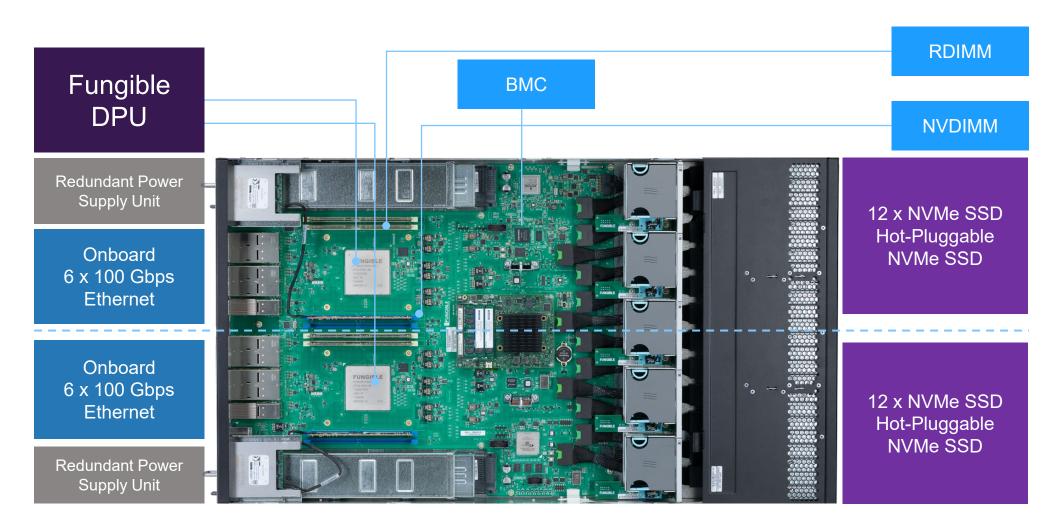
Why is Fungible DPU Important for Storage?

A Storage Workload has Special Requirements

- Handle Multiple (10s of 1000s) concurrent streams of data
 - CPUs have low IPC for multiplexed workloads
- Requires termination before processing
 - Packets to/from network; TLPs to/from PCIe
 - CPUs inefficient at termination handling
- Multiple passes needed over data
 - Compression, Encryption, Erasure coding
 - Stresses DRAM BW of CPU Based Storage (CBS)
- Needs separate memory for data & state to avoid cache pollution
- Needs accelerators for data reduction, security, protection



DBS Implementation


15 | ©2022 Storage Developer Conference ©. All Rights Reserved.

Fungible Storage Cluster (FSC) – First DBS Implementation

750W vs. 1500W - 2000W for CBS

FS1600 Under the Hood – Only DPUs, no CPUs

FSC Performance - IOPS

	BLOCK READS
Raw Single Node	15M 4KB IOPS (4 KB) 75 GBytes/sec (16 KB)
Network Protected (RF=2) Two Nodes (SSD and node failure protection)	15M 4KB IOPS (4 KB) 120 GBytes/sec (16 KB)
Network Protected 4+2 EC 6 nodes (SSD & node failure protection)	20M KB IOPS (4 KB) 160 GBytes/sec (16 KB)

- Linear performance scaling measured up to 16 nodes, expect continued linear scaling beyond this
- Database performance equal to DAS with EC
- <5% impact with compression and encryption turned on</p>

IOPS and Latency - EC(4+2) with 6 FS nodes – 4K IOPS

Operation	Workload	4К	8K	16K	
No Compression & Encryption	Random Read	18.36M@485us	28.69M@469us	<u>34.63M@533us</u> 52M@519us, QoS disabled	
	Random Write	5.12M@213us	6.65M@161us	6.11M@177us	
With Compression & Encryption	Random Read	17.99M@496us	28.68M@470us	33.80M@549us —	
	Random Write	5.93M@178us	9.18M@235us	10.47M@204us	

99th percentile latency near 1 msecs for reads; and 369 usecs for writes

19 | ©2022 Storage Networking Industry Association. All Rights Reserved.

Fungible Storage Performance on MySQL Database

DPU-based storage can be as fast as locally attached storage

Latency (usec)

Avg

Read

Latency (usec)

Avg

100.00 50.00 0.00

60k

80k

YCSB - Transactions Per Second (TPS)

100k

Update

- MySQL 8.0
- XFS filesystem
- Innodb storage engine
- Innodb buffer pool size= 16G
- DAS w/ MySQL table compression "zlib"
- FSC compression but no MySQL table compression
- Yahoo! Cloud Serving Benchmark (YCSB)
- 4KB record size
- 32,000,000 record count

500.00

0.00

LOWER IS BETTER

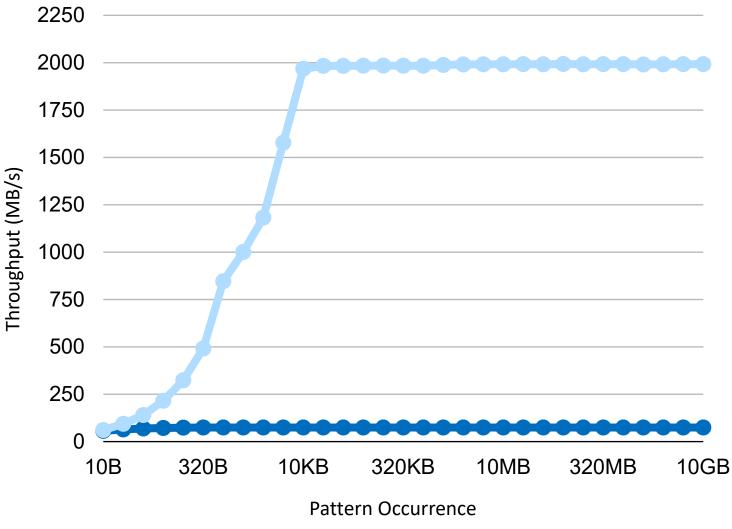
FSC-RF2-Comp

FSC-RF2-Comp

20 | ©2022 Storage Networking Industry Association. All Rights Reserved.

©2022 Fungible, Inc. All Rights Reserved.

60k


80k

YCSB - Transactions Per Second (TPS)

100k

Computational Storage --Regex Pattern Matching

- SW Pattern Matching (MIPS): ~75 MB/s •
- Perl (x86): ~140 MB/s
- Grep (x86): ~200 MB/s
- ⁻hroughput Regex (DPU, single cluster): ~1900 MB/s
- Performance scales rapidly as frequency of matches drops
- Complexity of pattern has very minor impact

©2022 Fungible, Inc. All Rights Reserved.

Regex HW Accelerator

SW (MIPS)

∳ FUNGIBLE

DBS vs. CBS

Comparing Storage Efficiency, Power, Rack Density & Performance

22 | ©2022 Storage Developer Conference ©. All Rights Reserved.

DBS is More Cost Efficient for 3 Reasons

Low overhead durability (25% for 8+2 EC vs. 200% for 3-way replication)

- EC uses Reed Solomon codes needing Galois field math which DPU is good at
- Durability needs efficient networking which DPU is better at

25% overhead versus 200% overhead 6.7% overhead with 30+2 EC

Superior compression (e.g. 3X vs. 2.5X) at line rate – minimal performance impact with in-line compression

Encryption without self-encrypting drives which are more expensive

DBS IS MORE STORAGE EFFICIENT Actual Customer Example

Comparing Raw TB per Effective PB

Storage Requirements : 1PB

	DIRECT ATTACHED STORAGE (DAS)		DBS STORAGE		CPU BASED STORAGE	
	Method	Media Required	Method	Media Required	Method	Media Required
EFFECTIVE STORAGE (TB)		1000		1000		1000
UTILIZATION	60%	1667	80%	1250	80%	1250
2 FAILURE PROTECTION	RF3	5000	8+2 EC	1562.50	RF3	3750
COMPRESSION	1x	<u>5000</u>	3x	<u>520.83</u>	2.5X	<u>1500</u>

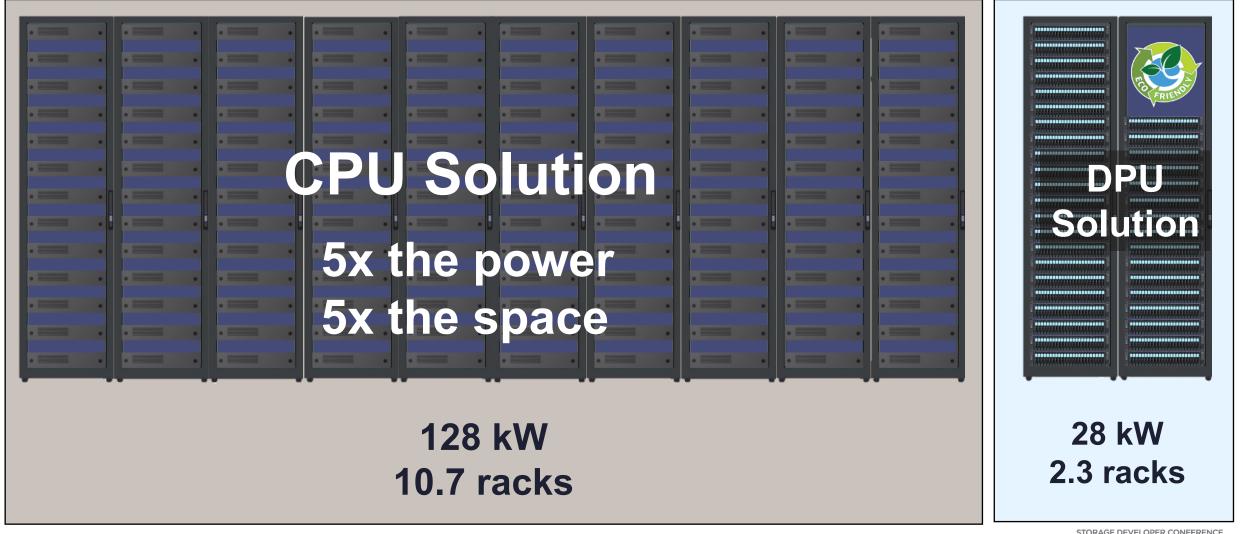
- 10X SAVINGS VERSUS DAS (Customer's current environment)
- 3X SAVINGS VERSUS COMPETITIVE SDS solution that customer looked at

DBS Has Lower Power

Yearly power savings at 10,000 storage boxes is 54000 MWH \$3M/year saved in power @ 6c/KWH

CPU assumptions

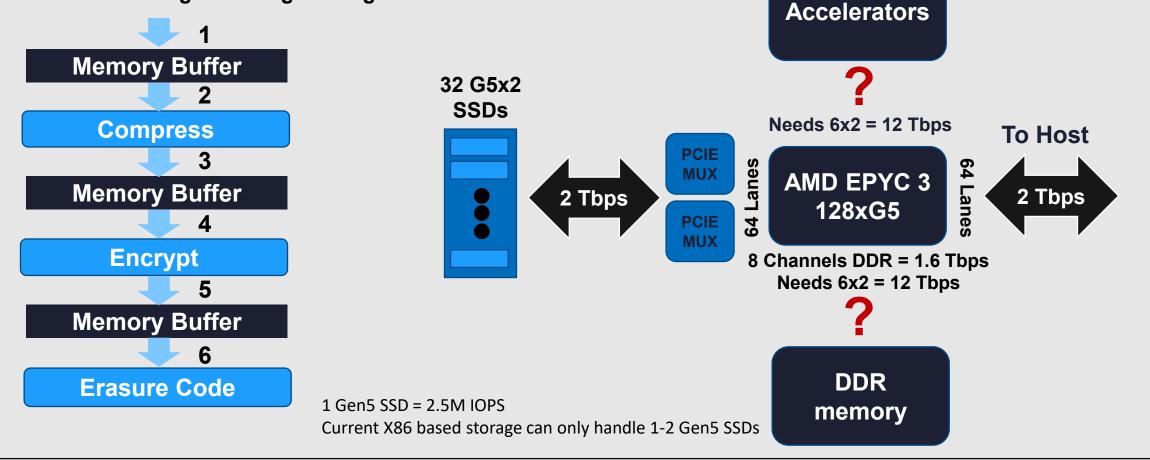
- Intel dual socket Icelake server, 2.5 Ghz Gold, 24 cores
- 2x100 Gbps NICs
- 128 GB DIMMs, 512 GB of NVDIMMs


DPU assumptions

- 2xF1 DPUs
- 8x100 Gbps integrated networking
- 256 GB DIMMs and NVDIMMs

	SDS	DBS	Ratio
Motherboard, DIMMs, networking	800	184	4.4X
2U chassis with 24 SSDs	1400	784	1.8X

DBS Has Lower Power, Better Rack Density – *Customer Example with 12 KW Racks*



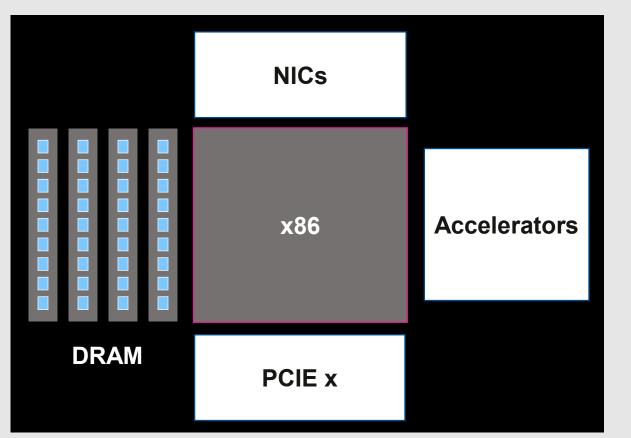
26 | ©2022 Storage Networking Industry Association. All Rights Reserved.

DBS Has Better Performance

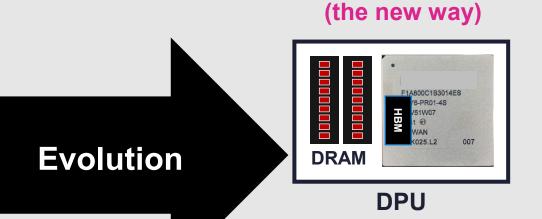
CPU Based Solutions have Insufficient Bandwidth and are Missing Accelerators

Storage Pipeline Needs 6-8x Memory BW vs. SSD BW DRAM BW too slow, on-chip buffers not large enough HBM is fast enough and large enough

FSC DBS Has Better Performance – Real Examples


Per socket performance – DPU is 3X to 8X better

Attribu	tes	Best CBS in Production	Fungible DBS in Production	Improvement Factor
Raw Ban	4K IOPs	1.5M - 2.5M	7.5M	3X - 5X
	Bandwidth GB/s	12	37.5	3.1X
2-Way Replication Bandwid GB/s	4K IOPs	1M - 1.5M	4M	2.7X – 4X
	Bandwidth GB/s	6	30	5X
Networked	4K IOPs	0.45M	1.8M	4X
	Bandwidth GB/s	1.9	15	8X



28 | ©2022 Storage Networking Industry Association. All Rights Reserved.

Summary -- DBS is the new way to build storage

Typical CPU Based Storage uses discrete parts (the traditional way)

Comparing CBS vs DBS implementations

Attribute	Best CBS	DBS	Improvement Factor
Performance/W	7.05 K IOPS/W 104.2K IOPS/W		14.8x
Performance	3M - 5M IOPS	15M IOPS	3x – 5x
Power (w/o SSDs)	800 W	184 W	4.4x
Power, Rackspace (w/ SSDs)	128KW 10.7 racks	28 KW 2.3 racks	5x
Storage Efficiency (TB per effective PB)	1500 TB	520 TB	2.9x
Regex	75 MB/s	2000 MB/s	26.7x

High Performance I ow Power Full Featured

Other Presentations from Fungible

Next Generation Architecture For Scale-out Block Storage By Jaspal Kohli

DPU as a Storage Initiator By Pratapa Vataka

Thank You!

Please take a moment to rate this session.

Your feedback is important to us.

31 | C2022 Storage Networking Industry Association. All Rights Reserved.

©2022 Fungible, Inc. All Rights Reserved.

Thank you.

32 | ©2022 Storage Developer Conference ©. All Rights Reserved.