O\ Meta

INFRASTRUCTURE

Debugging of Flash Issues Observed in Hyperscale Environment

Vineet Parekh Venkat Ramesh
Hardware Systems Engineer Hardware Systems Engineer 00 MetCI

60O

Family MAP : 3.59B

Globally, there are more than 3.59B people using Facebook, WhatsApp, Instagram or
Messenger each month.

0 © © o ® g ©

-9 . . o—e . . $

2004 2005 2006 2007 2008 2009 2010 201 2012 2013 2014 2015 2016 2017 2018 2019
N Meta

*MAP - Monthly Active People
Source: Meta Platforms Inc. Q4 2021

Flash Failure Debug Overview

@ Monitoring

e Deployment @ Alerting @ Triage —) @ Remediate —) @ Review

Anomaly
Detection

Data Collection for Flash Reliability

Periodic Collection - At Scale Non- Periodic — Individual Drive
(Automated) (Manual)

More Drives = Requires More Resources

Vendor & model independentlogs can be
captured efficiently by automation

Hardware Remediation @ Scale

Failure Detection — MachineChecker

Runs hardware checks periodically
Host ping, memory, CPU, NIC, dmesg,
S.M.A.R.T., power supply, SEL, etc.

Run periodically
and collect output

MachineChecker

On the machine

Daemon

Create alertifa
server check fails

Alert
Manager

Off the machine

Hardware Remediation @ Scale

Failure Detection — MachineChecker

Daemon

Create alertifa
server check fails

Failure Digestion — FBAR

e Facebook Auto Remediation

Run periodically

and collect output Alert

* Picks up hardware failures, process logged Manager
information, and execute custom-made l
remediation accordingly MachineChecker |em—

| FBAR

On the machine Off the machine

Hardware Remediation @ Scale

Failure Detection — MachineChecker

Daemon

create alertifa
server check fails

Failure Digestion — FBAR

run periodically

and collect output Alert

Low-Level Software Fix — Cyborg Manager
* Handles low-level software fixes such as | l
firmware update and reimaging MachineChecker
FBAR
Cyborg

On the machine Off the machine

Hardware Remediation @ Scale

Failure Detection — MachineChecker
Failure Digestion — FBAR
Low-Level Software Fix — Cyborg

Manual Fix — Repair Ticketing

* Creates repair tickets for DC technicians to
swap SSD

* Provides detailed logs throughout the auto-
remediation

* Logs repair actions for further analysis

run periodically
and collect output

Daemon

MachineChecker

create alertifa
server check fails

Alert
Manager

l

FBAR

l

Cyborg

l

Repair
Ticketing

Failure Types - Examples

Application
Level

Fleet
Monitoring

Debug Challenges

11

Stream 1
Sequential

Stream 2
Sequential

Stream 3
Random

—_—

e

PCle/NVMe Add in Card

Application 1 Application 2 Application 3

. . .

ZNS SSD Controller

I:l-.l:II:IDI:le‘I:II:II:II:II:l'
EI-DEIEIDEI*EIEIEIDD'

Blocks TaTEETTRRERRR -

VAN

Evolution of flash drives into complex storage system

Telemetry and SMART can help debug all problems....

$ sudo nvme smart-log /dev/nvmeOnl
Smart Log for NVME device:nvmeOnl namespace-id:ffffffff
critical warning : 0
temperature : 21 C
available _spare : 100%
available spare_threshold : 10%
percentage used : 2%
endurance group critical warning summary: 0
data_units_read : 5,749,452
data_units_written : 10,602,948
host_read commands : 77,809,121
host_write commands : 153,405,213
controller busy time : 756
power cycles : 1,719
power_on_hours : 1,311
f unsafe_shutdowns : 129
Y AP0 0 - 0 & Xieglle K47 1A g e media_errors : 0
4o Pbladiepy AL o ==

¢ num_err log entries : 1,243
Warning Temperature Time : 0
Critical Composite Temperature Time : 0
Temperature Sensor 1 : 21 C
Temperature Sensor 2 : 22 C
Thermal Management T1 Trans Count : 0
Thermal Management T2 Trans Count : 0
Thermal Management T1 Total Time : 0
Thermal Management T2 Total Time : 0

But can they????

Debug Challenges — Telemetry Is Overrated

e ‘SMART’ is not that Smart!

* SMART attributes are not enough to help hyperscalers to debug SSD
problems

* Barely provides any insight into the internal condition of the drive

* Telemetry Challenges

* Current model of telemetry log collection does not work at Scale

* Hyperscalers left in dark while vendors debug/root cause

* Long turnaround time for first level debug

Need more human readable logs for at scale debug

BEHA;
188 S E|D35F (X2

< 6Rv €. 4

yv\»
“Vi

Loas

PoLeeD
AT

7 DeBVG

_ - / ResoLoTlors FLES
4 EJ% Jg'lgé . TARES SENT
>| ol o)BI5P)2 o +DﬂTSI ok,
o e T ; % ‘

S Sa— X/
ek B Y MonTHS e
N

Debugging flash Issues in hyperscale environment is inefficient

L ERYVG

s> \/ENDop

Focusing on a real problem...

Latency stall — A single 1/O event taking more than the expected time to complete

1 Read/Write/Trim > 1 second

Latency Stalls in SSD

Firmware or Hard to Extremely difficult Significantimpact
ASIC bugs detect and long debug to services

Odds per Day

Greater than 1 second - I/O stalls per day

40 distinct SSD stallsin a thousand devices

Equivalent Odds

ELOWITH ‘WEEK Cl EN
ToP QB CHANGE QBADJ. TEAM DWSION

(@& Packers NFC North

Los Angeles Rams winning Superbowl
(2021 Playoff odds by FiveThirtyEight)

(%> Chiefs AFC West

AF Buccaneers NFC South

%5 Titans AFC South
#® Bills AFC East

+ Cowboys NFC East

£A Rams NFC West
1E2 Bengals AFC North
~® Patriots AFC East

€ 49ers NFC West
W Cardinals NFC West
& Raiders AFC West

1508 -28 47 Eagles NFC East 20%

(=) Steelers AFC North

High Level Storage Architecture

_ DAaTRBASE
CLIENT Aep TS M7 SAE ‘DATA
SERV ER e WORKY [T~ STRNCE MeTADATA
= T %7 | seevre
C =

ETHERNET

A single I/O stall can lead to multiple application requests stalled

Latency Stalls - Fleet Data

* Probability of latency stalls calculated over fleet over a
week. Looks familiar?

* Let's consider an SSD doing 1000 IOPS of 4K. Moderate?

Latency Stalls

Read Latency 10 Percentile Percent of Number of
(Upper Bound) Reads Reads in a
in this band SECOND
1ms 52.40 52.40 524
10ms 98.70 46.30 463
100ms 99.99 1.29 13
1s 99.999999 0.006 0
10s 99.9999999 8.07e-07 0

> 10s 100 1.008e-07 0

Latency Stalls

Read Latency 10 Percentile Percent of Number of
(Upper Bound) Reads Reads in a
in this band MINUTE
1ms 52.40 52.40 31,440
10ms 98.70 46.30 27,782
Access time of first 100mS 9999 1 29 774
commercial HDD: 1956
1s 99.999999 0.006 4
10s 99.9999999 8.07e-07 0

> 10s 100 1.008e-07 0

Access time of first
commercial HDD: 1956

Usain Bolt 100m sprint
record

Latency Stalls

Read Latency 10 Percentile Percent of
(Upper Bound) Reads
in this band
1ms 52.40 52.40
10ms 98.70 46.30
100ms 99.99 1.29
1s 99.999999 0.006
10s 99.9999999 8.07e-07
> 10s 100 1.008e-07

Number of

Reads in 3
DAYS

135,818,259

120,020,237
3,345,464

16,035

2
0

Efficient Debugging - Latency Monitoring Log

Bucket Structure

Bucket Description

< Saturating Read Command Counter
* Measured Latency
* Latency Stamp
<+ Saturating Write Command Counter
* Measured Latency
* Latency Stamp
“* Saturating De-allocate/TRIM Command Counter
* Measured Latency
* Latency Stamp

Real Time - Active Bucket Structure

Active Active Active Active
Bucket O Bucket 1 Bucket 2 Bucket 3

5 Active Bucket #1 counts
w‘:,:,',v",::;,:‘:,:’ﬁ ::::ﬁ,, when threshold is equal or JActive Bucket #2 counts | acive Bucket #3 counts
greater than threshold A greater to threshold B and eator 1o threshold ¢ ang | When threshold is equal or
and less than threshold B less than threshold C Lirieadgrasie uri i greater to threshold D

Active Threshold A Active Threshold B Active Threshold € Active Threshold D
ACt IVE Active Bucket Timer times how long Active Bucket 0-3

have been counting. When Active Bucket Timer expires
then Active Bucket 0-3 is loaded into Static Bucket 0-3,
Active Bucket 0-3 is reset to 0, Active Bucket Timer re-

Bucket

TI mer starts timing and Active Bucket 0-3 start counting.

Static Bucket Load Structure

Real Time Active Buckets

When Timer expires reset
Real Time Active Buckets
and load Static Buckets

Static Buckets

-Latency Monitor/C3 Log Page Data-

Controller : nvme®nl

Feature Status ox1

Active Bucket Timer 6025 min

Active Bucket Timer Threshold @ min

Active Threshold A 5 ms

Active Threshold B 50 ms

Active Threshold C 500 ms
l":;;;;:';;;;;:;l:T:TMUH'WTHUUW""";E::'Ei"J

Active Latency Stamp Units 1230

i Upnits 2
Debug Log Trigger Enable 1 I

Read
Active Latency Mode: Bucket @ 0
Active Latency Mode: Bucket 1 0
Active Latency Mode: Bucket 2 0
Active Latency Mode: Bucket 3]
Active Bucket Counter: Bucket 0 33
Active Bucket Counter: Bucket 1]

Active Bucket nter: ket 2)
Active Bucket Counter: Bucket 3 35 I

Active Measured Latency: Bucket @ 0 ms
Active Measured Latency: Bucket 1 9 ms
Active Measured Latency: Bucket 2 @ ms
Active Measured Latency: Bucket 3 @ ms

Active Latency Time Stamp: Bucket @ 2022-05-14 18:29:04.784 GMT

Static Bucket Counter: Bucket 1 0
Static Bucket Counter: Bucket 2]
Static Bucket Counter: Bucket 3]
Static Measured Latency: Bucket @ @ ms
Static Measured Latency: Bucket 1 0 ms
Static Measured Latency: Bucket 2 @ ms
Static Measured Latency: Bucket 3 @ ms
Static Latency Time Stamp: Bucket @ N/A
Static Latency Time Stamp: Bucket 1 N/A
Static Latency Time Stamp: Bucket 2 N/A
Static Latency Time Stamp: Bucket 3 N/A

oo oS

o

o ms
0 ms
0 ms
9 ms

2022-05-14 13:25:54.224

N/A
N/A
N/A

GMT

Write
0
0
0
0
147
9
0
0
9 ms
0 ms
0 ms
9 ms

2022-05-14 13:25:53.289 GMT
2022-05-14 13:25:53.281 GMT
N/A
N/A

Deallocate/Trim

: N\ A
Kernel stats App metrics LM Log
counters

Workload
characteristics

Debug 4

Workflow
@ Scale

7 A K

Monitoring Alerting Remediation

Observability throughout the 1/0 lifecycle

chassis

AneTeant
pplication A Storage Stack Example

il EXT: FILE-OFFSET BLOCK-RANGE AG AG-OFFSET TOTAL FLAGS
Q: [0..409607]: 418328064..418737671 11 (15862528..16272135) 409608 000101

EVENT TIME COMM TID CPU DETAIL

File System

- nvme_setup_cmd 3.44% mysqld 800131 [009] disk=nvmeln1 ctrl_id=1 qid=10 opcode=2 flags=0 fctype=1 cid=294 nsid=1
metadata=0 cdw10=ARRAY[f2, 43, 1e, 03, 00, 00, 00, 00, 01, 00, 00, 00, 00, 00,
00, 00, 00, 00, 00, 00, 00, 00, 00, 00]

nvme_complete_rq 0% swapper 0 [009] disk=nvmeln1 ctrl_id=1 qid=10 cid=294 result=0 retries=0 flags=0 status=0

) 4

[unknown] ([Exited Process]) 20.0% ret_from_fork 20.0%
[unknown] ([Exited Process]) 20.0% kihread 20.0%
[unknown] ([Exited Process]) 20.0% worker_thread 20.0%
cpuidle_enter 30.0% schedule_idle 30.0% [unknown] ([Exited Process]) 20.0% process_one_work 20.0%
cpuidle_enter_state 30.0% __sched_text_start 30.0% [unknown] ([Exited Process]) 20.0% blk_mq_run_work_fn 20.0%
asm_common_interrupt 30.0% finish_task_swilch 30.0% [unknown] ([Exited Process]) 20.0% blk_mq_sched_dispatch_requesis 20.0%
common_interrupt 30.0% asm_common_interrupt 30.0% entry SYSCALL_64 20.0% __blk_mq_sched_dispatch_requests 20.0%
__common_interrupt 30.0% ‘common_interrupt 30.0% do_syscall_64 20.0% blk_mq_do_dispatch_sched 20.0%
handle_edge_irg 30.0% __common_interrupt 30.0% __x64_sys_execve 20.0% blk_mq_dispatch_rq_list 20.0%
handle_irg_event 30.0% handle_edge_irg 30.0% do_execveat_common 20.0% nvme_gueue_rq 20.0%
. a . . y # __handle_irq_event_percpu 30.0% handle_irq_event 30.0% bprm_execve 20.0% blk_mq_start_request 10.0% | nvme_setup_cmd 10.0%
nvme_irq 30.0% __handle_irq_event_percpu 30.0% exec_binprm 20.0% blk_mq_start_request 10.0% ‘ nvme_setup_cmd 10.0%
blk_mg_end_request 10.0% | nvme_complete_rq 10.0% ‘ nvme_handle_cge 10.0% nvme_irg 30.0% __kenel_read 20.0%
blk_update_request 10.0% | nvme_complete_rq 10.0% | nvme_handle cqe 10.0% | blk_mq_end_request 10.0% | nvme_complete_rq 10.0% | nvme_handle_cqe 10.0% filemap_read 20.0%
blk_update_request 10.0% blk_update_request 10.0% | nvme_complete_rq 10.0% | nvme_handie_cqe 10.0% filemap_get_pages 20.0%
blk_update_request 10.0% page_cache_ra_unbounded 20.0%
read_pages 20.0%
blk_finish_plug 20.0%
blk_mq_flush_plug_list 20.0%
blk_mgq_sched_insert_requests 20.0%
—blk_maq_delay_run_hw_queue 20.0%
blk_mq_sched_dispatch_requests 20.0%
_ blk_mq_sched_dispatch_requests 20.0%

Summary

* At scale debug is extremely challenging due to inefficient design of debug logs
for use at hyperscale environment

* Let’s converge on debug-ability initiatives
* BPF scripts for triage
* Latency Monitoring Spec - Link

* NVMe-CLI/ plugins / OCP - Link

* Meta welcomes Industry Partner’s ideas on how to improve debug @ Scale

Together we can make debugging SSDs better!

https://www.opencompute.org/documents/datacenter-nvme-ssd-specification-v2-0r21-pdf
https://github.com/linux-nvme/nvme-cli

O\ Meta

