
Why KV SSD will replace ZNS

Andy Tomlin - SDC Sept 12, 2022

Andy Tomlin Bio

CEO & Founder at QiStor, developing next generation storage solutions

30 Year storage veteran, over 50 patents in Flash System Design, numerous
flash based products delivered to customers

Leadership and Architecture roles at Kioxia, Samsung/Stellus, WD, Skyera,
Sandforce, Sandisk, Quantum, IBM

“Every problem is one more abstraction away from solving”

Storage Problem
For the last 50 years, legacy storage has used fixed sized containers (LBAʼs) to store data

Real objects never fit exactly, so host mapping systems have been added to manage this

This mapping is the source of significant complexity, performance & scaling problems

This leads to extensive costly overprovisioning of Flash & Servers as the only solution

… at the moment

Why do drives wear out and need replacement?

Tiny objects amplify wear, and tiny objects are the most common (50-200B)

To change one small red object to a yellow object, all the other objects in the same
container also get rewritten, even though they never changed → Wear & Power

Facebook Kangaroo cache
is a method to help
manage this issue - but it is
an incremental
improvement and does not
solve the fundamental
problem

Today’s Layered Architecture is Massively Inefficient

The pyramid of layers adds significant host software and
management complexity

Layers multiply reads and writes

lots of CPU cores, memory, and power is spent on this work
instead of Customer value (~2 cores per drive)

Drives wear faster, burning power and impacting performance

Due to complexity it requires skilled engineers to configure and
optimize HW and database

Existing Architecture cannot scale to meet growing needs

SSD

Host
mapping

Key
Value

Meta
Data GC

GC

Meta
Data GC

Meta
Data

Typical legacy block stack today

SSD

Host
mapping

Key
Value

Meta
Data GC

GC

Meta
Data GC

Meta
Data

Host

Device

KV Database

File System

Flash Mgt Sys

Each mapping layer performs a similar
set of critical functions:
1. Allocation of space
2. Tracking of location via metadata
3. Garbage collection

As these layers are all independent of each other, write amplification is multiplied

The ZNS goal

Host

Device

ZNS KV
Database

Flash Mgt Sys

Simplify the device Flash management
system to reduce the amount of metadata
● ʻWriteʼ & Erase in bigger chunks (eg

1MB)
● Write in manner to ʻeliminateʼ GC

Move all the mapping complexity to the
host

By neutralizing the device GC the
multiplication factor becomes 1

This will definitely be better than legacy…

SSD

Key
Value

Meta
Data GC

GC
Meta
Data

Solve the legacy map stacking
problem by moving everything to the
host

The ZNS problem

The ʻhopeʼ is that SSD Mapping system GC is close to 0 and that the Overprovisioning
can be minimized…

…and that you can keep balance the broomstick on your hand

ZNS Model

Uniform Flash
Blocks

Simple Flash
Management

Reality

Flash Blocks
Variable sized

Variable
ECC

Read
disturb

Wear

Defects

Program
Disturb

Power
Fail

Write
pointer

Over
Provisioning

Metadata GC

SSD Mapping System

ZNS is a Short Term Kludge

ZNS improves on legacy stack
Pros Cons

Pulls device complexity into Host

Interface abstraction does not match
the needs of the application

Poor scaling

Requires ʻwell behavedʼ host

FIX THE ABSTRACTION - STOP BALANCING THE BROOM

KV ensures ALL over provisioning in one place - the device

✘✔

✘

✘

✘

Key-Value SSD solves the fundamental problem
Removes the need for Host to track data location

Mapping layers are eliminated

Axiomatically the optimal solution

Significantly Less Power

Higher Performance & Linear Scaling

No optimization required

Fixed sized containers
eliminated

objects accessed
by reference

Lowers CAPEX
Lowers OPEX

KV lowers TCO compared to ZNS
ZNS Legacy KV

Allocation/Tracking of Value loc Host Host Device

GC of Logical space Host Host
Device

GC of Flash Space Host(Mostly) Device

Compression Host(SW) Host(SW) Device(HW)

Application WA 12-30 (LSM) 10-30 (LSM) 1

Flash WA 1.1 3 1.5-9

Total WA 13-33 30-90 1.5-9

ZNS ʻsolvesʼ Multiplied GC by mostly
performing Flash space GC in the
Host as part of logical space GC
This is an expensive solution

Host CPU Performs:
Data placement
GC
Compression
Metadata management
Application Functionality

Host CPU Performs:
Application Functionality

CPU limited

With KV all the
overprovisioning is in
one place, which is the
optimal place

Scales with devices

KV is
inherently the
Green solution

{95%

5%

100%

Low Total WA is
enabler for
QLC/PLC flash

Compute Scaling - Why Host Data Placement is a Dead End

GPU

Smart
NIC

Today: Era of smart HW offloads where
custom programmable HW is responsible
for most of compute scaling

Limited power envelope means the CPU
gains from frequency and cores is ending

 FPGA,
Security

ZNS and other data placement
ideas are moving storage
compute workload to host

Storage
(ZNS)

KV SSD

Storage is going in the
wrong direction

Frequency

Cores

Co
m

pu
te

 P
ow

er

HW Offload

KV SSD looks to
offload Storage
tasks

ZNS is only a solution for
top 3-4 cloud providers

ZNS requires application support to get any benefit,
limiting its deployment opportunity

The customer optimization problem

Most customers treat application/database optimization as a way to solve problems

Vast majority of Databases & HW platforms are run unoptimized

QiStor solution: Less HW, linear scaling, smaller software stack makes all this much simpler

Skilled Database
Engineer

Database

Instance
Type

Configuration
Patching &

Optimization

IndexingCaching Memory
Size

Application Selection

Sizing

Load Balancing

Storage
Type

HW Platform

Testing

OS

File System

How big a key do you need?

The main driver for the key size is the number of objects being stored

You want enough bits that the number of collisions is ʻmanageableʼ

● Manageable can mean different things for different designs…

Collisions/collision probability is based on the Birthday Paradox

Data size Average
object size

Approx Number
of Objects

Key size
(bits)

Expected Number
of collisions

16TB
128B 2^37 104 64

1K 2^34 96 32

128TB
128B 2^40 112 128

1K 2^37 104 64

How is a KV drive different from a regular Legacy SSD

Data
size

Average
object size

Approx Number
of Objects

Key size
(bits)

Metadata
size

16TB
128B 2^37 104 2.5TB

1K 2^34 96 0.3TB

128TB
128B 2^40 112 22.5TB

1K 2^37 104 2.7TB

Data size Compression Metadata
size

16TB
No 0.016TB

Yes 0.052TB

128TB
No 0.144TB

Yes 0.448TB

The key difference is all in the scale of the metadata

2-3 Orders of magnitude

Legacy drive KV drive

Implies Drive FTL
must be Native KV

Remember the metadata on KV drive is replacing much of
application metadata, for overall reduction in total metadata

Why is KV SSD so much more Power efficient

Host based GC

Device based GC

Garbage collection steps
1. Identify what to GC
2. Determine if data is valid
3. Copy valid data

Host Based: Data passes over many buses, memories and requires
tens of thousands of CPU instructions

Device Based: Handled by custom HW

Garbage collection on host is 1-2 orders of magnitude higher power

SSD
Controller

Power = Power per op * Number of ops
Power per op

Due to Write Amp, power
is dominated by GC

Number of ops
KV SSD does significantly less ops than legacy or ZNS type solutions due to lower write amplification

X

Why must a KV SSD be a native solution?

Device SSD

Key
Value

Meta
Data GC

GCMeta
Data Device

Native KV

KV SSD GCMeta
Data

Native KV design is necessary as the whole point is to have a single GC

Layered KV

SSD

Host
mapping

Key
Value

Meta
Data GC

GC

Meta
Data GC

Meta
Data

Host

Device

Legacy Stack

Today - maximum
Metadata and GC

Layered KV - minimal
reduction in Metadata and GC

Native KV - large reduction in
Metadata and GC

If KV in the device is so great, why isnʼt everyone doing
it?

EcosystemKV is Hard

Requires radical rethink and
innovation in how SSD mapping
works to cope with significantly
more mapping data (>20x legacy)

Software
Stack

KV is completely different to
Legacy storage, and there is
no software stack today

Customers want simple path to
solution that solves the problem
and is easy to adopt

QiStor has done this
innovation

QiStor has expertise and
will build this stack

QiStor solution will
achieve this

KV enables new solutions - ML

Nvidia & IBM proposed new methods of supplying
data to GPU for ML without involving CPU

Potential ʻKiller Appʼ for KV SSD

https://arstechnica.com/gadgets/2022/03/nvidia-wants-to-speed-up-data-transfer-by-connecting-data-center-gpus-to-ssds/

Main function of CPU in the paper is
to handle file system and convert
into offsets. With KV none of this is
necessary and just keys can be
communicated for significant
simplification

https://arstechnica.com/gadgets/2022/03/nvidia-wants-to-speed-up-data-transfer-by-connecting-data-center-gpus-to-ssds/

QiStor Technology - Application Storage Accelerated

KV
Mixed

Namespaces

HW Compression

Legacy
Block

Custom HW
Engines

Reduced SRAM

Reduced Hold
Up CapacitorsTechnology

2.0
Dual Port

CPUʼs coupled with dedicated HW
engines for performance and flexibility

Improved FTL design to
reduce cost and power

Full namespace
flexibility to mix
legacy compressed
and uncompressed
namespaces with KV

Novel FTL design to
handle high KV metadata
workloads. DRAM Fully
cached and partial cached
mapping modes

 Storage Engine

RocksDB MySQL

Apps
Filesystem

API compatible

KV SSD FPGA

2.0 KV SSD Driver

