

STORAGE DEVELOPER CONFERENCE

SD2 Fremont, CA September 12-15, 2022 BY Developers FOR Developers

Power of Chaos: Long-term Security for Post-quantum Era

Rahul Vishwakarma

Graduate Student California State University, Long Beach

rahuldeo.vishwakarma01@student.csulb.edu

Dr. Amin Rezaei

Assistant Professor California State University, Long Beach

amin.rezaei@csulb.edu

Dr. Ava Hedayatipour

Assistant Professor California State University, Long Beach

ava.hedayatipour@csulb.edu

LONG BEACH

Agenda

- Post-quantum era
- Chaos cryptography
- Conclusion

Post Quantum Era

Risks for classical cryptography

3 | ©2022 Storage Developer Conference ©. All Rights Reserved.

Asymmetric cryptography

Security foundations

- Integer factorization
- Discrete logarithms

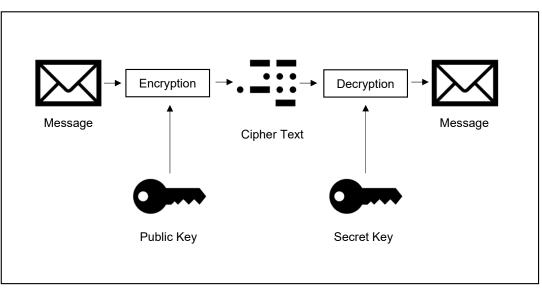



Figure 1: Asymmetric cryptography

Post-quantum era

Quantum computers

- Qubits
 - Superimposition
 - Entanglement

Shor's algorithms

- Impact on classical cryptography
 - RSA scheme
 - Finite Field Diffie-Hellman key exchange
 - Elliptic Curve Diffie-Hellman key exchange

Figure 2: Classical Vs Quantum computers to break cryptosystem

Quantum safe algorithms

- Lattice
- Code
- Hash

- Non-commutative
- Multivariate
- Isogeny

Academics and Industry

- PyCrypto
- European Telecommunications Standards Institute (ETSI)
- Institute of Quantum Computing

Where we need quantum safe cryptography?

- Medical records
 - 5 100 years
- Implantable wearable devices
 - Biomedical devices
- Financial institutions
 - Tax
- Communication

Chaos-Based Cryptography

8 | ©2022 Storage Developer Conference ©. All Rights Reserved.

Chaos

Properties

- Deterministic
 - Mathematical model
- Nonlinear
 - Logistic map
- Sensitive dependence
 - Butterfly effect

Chaos – Deterministic

Mathematical model

- Discrete equations
 - Logistic map
- Differential equations
 - Lorenz system

Chaos – Nonlinear

Logistic Map

 $x_{n+1} = r x_n (1 - x_n),$

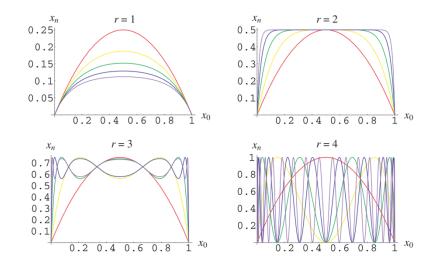


Figure 3: Plotting logistic map for different values of r

Chaos – Sensitive dependence

Butterfly effect

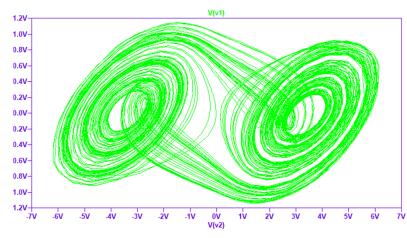


Figure 4: Double scroll attractor for Chau chaotic equations

0.1	0.101
0.3465	0.34957615
0.871785338	0.875384762
0.430336302	0.419982181
0.943815831	0.937849022
0.204155905	0.2244097
10.62553365	0.670092448
0.901829019	0.851113953
10.34085374	0.48786812
10.864989	0.961933347
0.449614656	0.140977693
0.952726071	0.466246485
0.173400554	0.958113696
0.551831287	0.15450759
0.952157043	0.50294473

 $x_{n+1} = r x_n (1 - x_n),$

Cryptographic algorithms and chaotic system

Cryptographic algorithms	Chaotic Systems
Finite set of integers	(sub)set of real numbers
Algebraic methods	Analytic method
Rounds	Iterations
Key (Boolean) – Discrete keyspace	Parameters (real) – Continuous keyspace
Diffusion	Sensitivity to change in initial condition
Security and performance	?

STORAGE DEVELOPER CONFERENCE

Chaotic system architecture

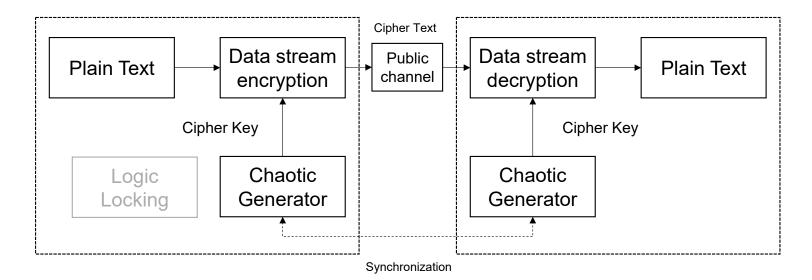


Figure 5: High level architecture of chaotic cryptography

Chua chaotic circuit

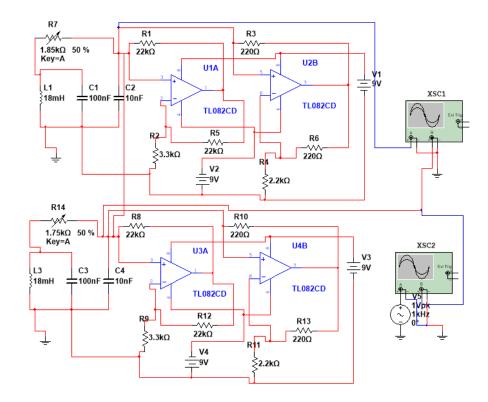
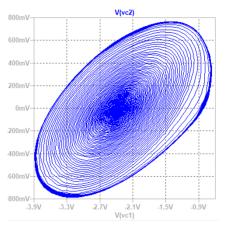



Figure 6: Circuit realization of Chau chaotic circuit

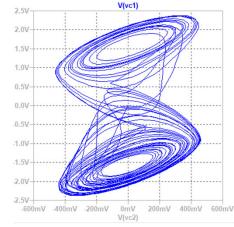


Figure 7: Single scroll attractor

Figure 8: Double scroll attractor

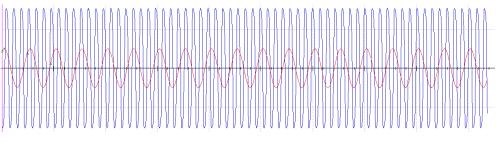


Figure 9: Plain text and encrypted information with Chaos

Chua chaotic circuit

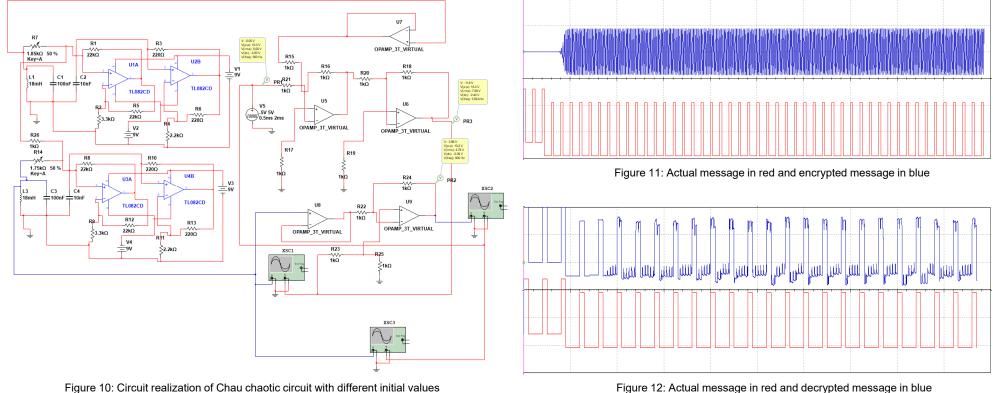


Figure 10: Circuit realization of Chau chaotic circuit with different initial values

Implementation challenges

- Definition of the key leading to non-chaotic behavior
- Nonuniform probability distribution function
- Return map reconstruction
- Low sensitivity to secret key
- Erosion of computational efficiency due to the structural complexity

Design rule for chaos-based cryptography

- Exhaustive and rigorous definition of key and the keyspace
- Selection of chaotic maps with high sensitivity to control parameter mismatch
- Analysis of the performance of chaotic orbits as source of entropy
- Resistance to application-specific attacks
- Resistance to classical attacks

Industrial Adoption

19 | ©2022 Storage Developer Conference ©. All Rights Reserved.

National Institute of Standards and Technology (NIST)

Lattice problems and hash functions

- Public-key-encryption (1)
- Digital signatures (3)
- Post-quantum Cryptography VPN, Microsoft
- PICNIC (Digital signature algorithms), Microsoft
- Quantum Safe services: Kyber, IBM
- AWS KMS API endpoints, AWS KMS

Conclusion

21 | ©2022 Storage Developer Conference ©. All Rights Reserved.

Conclusion

- Understanding chaos-based cryptology
- Challenges in implementing post-quantum era cryptography
- No silver bullet for quantum safe algorithms
- Growing industrial adoption
 - Chaos-based cryptography (?)

Please take a moment to rate this session.

Your feedback is important to us.

