STORAGE DEVELOPER CONFERENCE

SD2 Fremont, CA September 12-15, 2022

BY Developers FOR Developers

# OPI (Open Programmable Infrastructure) Overview

A SNIA, Event

13-SEP-2022

Presented by

Joseph L White, OPI TSC Chair, Dell Fellow/VP Venkat Pullela, OPI TSC, Chief of Technology, Networking, Keysight

## -OPEN PROGRAMMABLE INFRASTRUCTURE PROJECT



The objective of the Open Programmable Infrastructure Project is to foster a community-driven **standards-based open ecosystem** for next generation architectures and frameworks based on **DPU and IPU technologies**.

https://opiproject.org

https://github.com/opiproject



3 | ©2022 Storage Networking Industry Association. All Rights Reserved.



Founding Members listed Many other companies and individuals participating & contributing



#### Infrastructure Transformation





#### xPU models

- Offload and Accelerate
   CPU functions
- Security Isolation
- Independent
   infrastructure endpoint



#### **Project Goals**



Open-Source and Standards for xPU/DPU/IPU Technologies

- Community-driven standards-based open ecosystem
- Vendor agnostic framework and architecture
- Define new APIs and Standards where needed
- Reuse already existing APIs and Standards
- Provide implementation examples + Reference Platform





#### **SNIA** Dictionary Definition



**DPU**: An accelerator element capable of parsing, processing, and transferring data with performance efficiency.

A Data Processing Unit (DPU) usually has a set of programmable acceleration engines that offload and improve performance for applications such as AI/ML, security, telecommunications, and storage. DPUs may also be called SmartNICs, IPUs or NAPUs.



7 | ©2022 Storage Networking Industry Association. All Rights Reserved.

#### **DPU Definition Expanded**



#### **DPU - Data Processing Unit (aka xPU)**

Effectively a micro-server optimized for dataflow and packet processing providing accelerators, offload engines, & local services

Presents virtual functions to a host (looks like a NIC, GPU, etc)

- DPU Internal Components
  - General Purpose CPU Cores with Memory
  - PCIe Interface with Local Switching
  - Network Interfaces (Data and Management) with Local Switching
  - Accelerators, Offloads Hardware, Programmable Pipelines
  - Embedded BMC
- Server Architecture
  - DPUs typically a built as a PCIe Card (>1 allowed)
  - Other instantiations like switch embedded or standalone possible
  - DPUs present conventional PCIe functions to hosting servers
  - DPUs can directly access PCIe Devices
- DPU Operating System
  - Linux (N flavors, Ubuntu/Debian is common)
  - VMware
  - proprietary
- Common Tool Chains Apply
  - System configuration and management
  - Network configuration and management
- K8s
  - container installation and management



#### Key characteristics of DPU based architectures



- Capable of booting a general-purpose OS
- Domain-specific HW acceleration capabilities
- Software-defined device functions
  - allow the software components to be flexibly deployed
  - define the device's functions that are presented to the host
  - Offloading complete software subsystems, (eg Networking or Storage stack)
  - Control planes
- Security isolation from the host at the hardware-level
- Unique network identity
- Management
  - Capable of being managed as part of the hosting server (through BMC or hosting OS)
  - Capable of being directly managed (out-of-band) separately from the hosting server
  - Capable of managing the hosting server



PROGRAMMABLE

PROJECT

INFRASTRUCTURE

#### **DPU Use Cases**





- Common Industry Acceleration & Offload Use Cases
  - Network Switching
  - Network Connectivity
  - Gateway
  - Storage Connectivity including NVMe/TCP, NVMe/RoCE
  - Storage Services
  - Expose Hosting System Resources
  - Security (Firewall, DPI, Key Management, Intrusion Detection/Protection, Host Isolation)
  - Telemetry Collection and Processing
  - Hypervisor
  - CNF/NFV Hosting
  - Provide Accelerators/Co-processing to Hosting system
  - Boot and provisioning





#### **OPI Compliant Devices Minimum Expectations**

- Presence of their own general purpose processor
- The ability to boot a general purpose OS
- Domain-specific HW acceleration capabilities
- Software-defined device functions that allow the software components deployed to them to define the device's functions that are presented to the host
- Offloading of whole software subsystems, such as the Networking or Storage stack, including their control planes
- Strict security isolation from the host on the hardware-level
- Unique network identity
- Mangement
  - Capable of being managed as part of the hosting server (through BMC or hosting OS)
  - Capable of being directly managed (out-of-band) separately from the hosting server
  - Capable of managing the hosting server





### **OPI Scope**

| Platform                                    | API                                 | Device Monitoring                         |  |  |
|---------------------------------------------|-------------------------------------|-------------------------------------------|--|--|
| <ul> <li>Device Discovery</li> </ul>        | <ul> <li>Storage</li> </ul>         | <ul> <li>Open Telemetry (OTEL)</li> </ul> |  |  |
| <ul> <li>Zero Touch</li> </ul>              | <ul> <li>Network</li> </ul>         | <ul> <li>Metrics</li> </ul>               |  |  |
| <ul> <li>Zero Trust</li> </ul>              | <ul> <li>Security</li> </ul>        | <ul> <li>Logs</li> </ul>                  |  |  |
| <ul> <li>Inventory</li> </ul>               | <ul> <li>AI/ML Interface</li> </ul> | <ul> <li>Tracing</li> </ul>               |  |  |
| <ul> <li>Lifecycle &amp; Updates</li> </ul> |                                     |                                           |  |  |
|                                             |                                     |                                           |  |  |





#### **OPI Overall Structure**



STORAGE DEVELOPER CONFERENCE



### Provisioning and Lifecycle Working Group

- Discovery & Provisioning
- Inventory
- Boot sequencing
- Lifecycle & Updates
- Monitoring & Telemetry

|                      | Host | DPU       | DHCP<br>Server                              | sZTP<br>Provisioning<br>Server | File Server<br>HTTPs | Voucher<br>Server | CA<br>Server | LOG |
|----------------------|------|-----------|---------------------------------------------|--------------------------------|----------------------|-------------------|--------------|-----|
|                      | Pov  | ver ON    |                                             |                                |                      |                   |              |     |
| Discovery            |      | DHCP broa | dcast request                               |                                |                      |                   |              |     |
| DPU joins<br>network |      |           | Request to Join the netwo<br>sending IDevID | rk 🔸                           |                      |                   |              |     |
| trusts<br>Network    |      | Give m    | e Voucher, I want to trust the              | e network                      |                      |                   |              |     |
| LDevID               |      |           | Point me to CA<br>Where is File server      |                                |                      |                   |              |     |
| FW and<br>OS img     |      |           |                                             |                                |                      |                   |              |     |





### **Device Discovery and Provisioning**

- Security first (mutual trust)
   sZTP & FIDO
- Zero-Touch
  - Plug & Play
- Monitoring all the way
  - OTEL
- Multiple use cases
  - □ Challenges







### Monitoring & Telemetry via OTEL

- OPI adopted <u>OTEL</u> for xPUs
- Single integration with OTEL instead of with multiple systems
- Supports Traces, Metrics, Logs
- OPI mandates only OTEL <u>Specification</u>
  - \* Not OTEL SDK, OTEL Collector
- Micro-Aggregator in xPUs, Marco-Aggregator across xPUs
- Common Metrics across xPU vendors





### API & Behavioral Model Working Group

- Object models
- Host & Management facing APIs
- Taxonomy for Services
- Re-use industry standard APIs
- Reference Orchestration Client







### **DPU Open APIs**

| <ul> <li>System</li> <li>Systems Management &amp; Lifecycle         <ul> <li>(Redfish, BMC, etc.)</li> <li>Monitoring, Metering, &amp; Telemetry</li> </ul> </li> <li>Operating System (Linux)         <ul> <li>Standard Linux Libraries and packages</li> <li>Container and Application Hosting</li> <li>Leverage commonly used APIs             <ul> <li>DPDK, SPDK, EBPF</li> </ul> </li> </ul></li></ul>  | <ul> <li>Storage         <ul> <li>Networked Storage</li> <li>NVMe/TCP</li> <li>NMVe/RoCE(RDMA)</li> </ul> </li> <li>Storage Services         <ul> <li>RAID/Erasure Coding/etc</li> <li>Compression</li> <li>SDXI Offload</li> </ul> </li> </ul> | <ul> <li>Networking         <ul> <li>SONiC                 <ul> <li>OpenConfig (includes BGP, etc)</li> <li>SAI implementation by the DPU</li> <li>Policing and QoS and SLA</li> <li>Multi-tenant Overlay</li> <li>Host facing NIC Configurations</li> <li>OVS</li></ul></li></ul></li></ul> |  |
|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|
| <ul> <li>Hardware (PCIe)         <ul> <li>Virtual Function Mapping</li> <li>Offload Configuration</li> </ul> </li> <li>Low Level (likely Vendor specific APIs)         <ul> <li>Micro-Code in Data Flow Processing Cores</li> <li>P4 Packet Processing Pipelines</li> </ul> </li> <li>Vendor Unique API &amp; SDK         <ul> <li>These are NOT common/Open APIs</li> <li>ASAP2, SNAP</li> </ul> </li> </ul> | <ul> <li>Gateway</li> <li>Connection Tracking</li> <li>Load Balancing</li> <li>NAT</li> <li>Tunnels</li> </ul>                                                                                                                                  | <ul> <li>Security         <ul> <li>Policy &amp; Filters</li> <li>Crypto Offloads</li> <li>Secure Storage                 <ul></ul></li></ul></li></ul>                                                                                                                                       |  |





#### **Developer Platform Working Group**

- Multi-Vendor Lab
  - Considering UNH
- Virtual & Hardware POCs
- Simulation Environment
   CI/CD







### Use Cases Working Group

#### Initial Use Cases

- NVMe/PCIe to NVMe/TCP bridge
- Basic Firewall with rule-based filtering

#### General High Interest Areas

- Storage
- Security
- Networking
- AI/ML





#### Key Takeaways and Call to Action

- Industry interest for developing common xPU APIs is strong
  - Customers, xPU Vendors, Software Vendors, Solution Providers
- Immediate Relevance to Storage and Storage Networking
- Brand new effort so Join Now!
  - We need input and contributions across the working groups









Anyone can participate and contribute to the OPI Project

- 1. **To Participate,** check out the <u>OPI Mailing List</u>, and the <u>OPI Slack channels</u>.
  - a. Join the subgroup lists and channels in which you would like to participate.
  - b. Join the subgroup meetings via the invites found <u>here</u>.
- 2. **Contribute** by following the steps <u>here</u> on GitHub.
- **3.** Become a Member and support the OPI Project at the Linux Foundation <u>link</u>.
  - a. Open Programmable Infrastructure would not exist without the support of the member organizations.





## Please take a moment to rate this session.

Your feedback is important to us.



23 | ©2022 Storage Networking Industry Association. All Rights Reserved.

## -OPEN PROGRAMMABLE INFRASTRUCTURE PROJECT