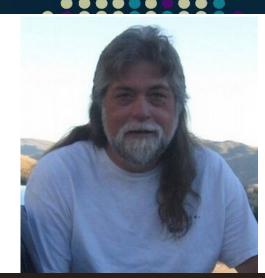
STORAGE DEVELOPER CONFERENCE

BY Developers FOR Developers

CXL and the Art of Hierarchical Memories

Their Management and Use


Andy Banta, Storage Janitor, Magnition Inc.

Kin-Yip Liu, Senior Director Solutions Architecture, AMD

Andy

Banta

Magnition.io (Consultant) SolidFire (VMware development, acq. by NetApp) DataGravity (Container exploitation lead) VMware (iSCSI Tech Lead, IPO) Sun Microsystems (Initial Fibre Channel development) Patent, early distributed network projects, data acquisition @andybanta

Kin-Yip Liu AMD (Sr. Director, Solutions Architecture; Networking & Storage) Intel (Sr. Director, Architecture; Persistent Memories) Marvell/Cavium Networks (Sr. Director, Solutions Architecture; Networking, Security, 3G/LTE/5G Infrastructure, Telco NFV) Intel (Architect, Designer; Server/Network/Mobile Processors) kin-yip.liu@amd.com

AMD

NUMA overview

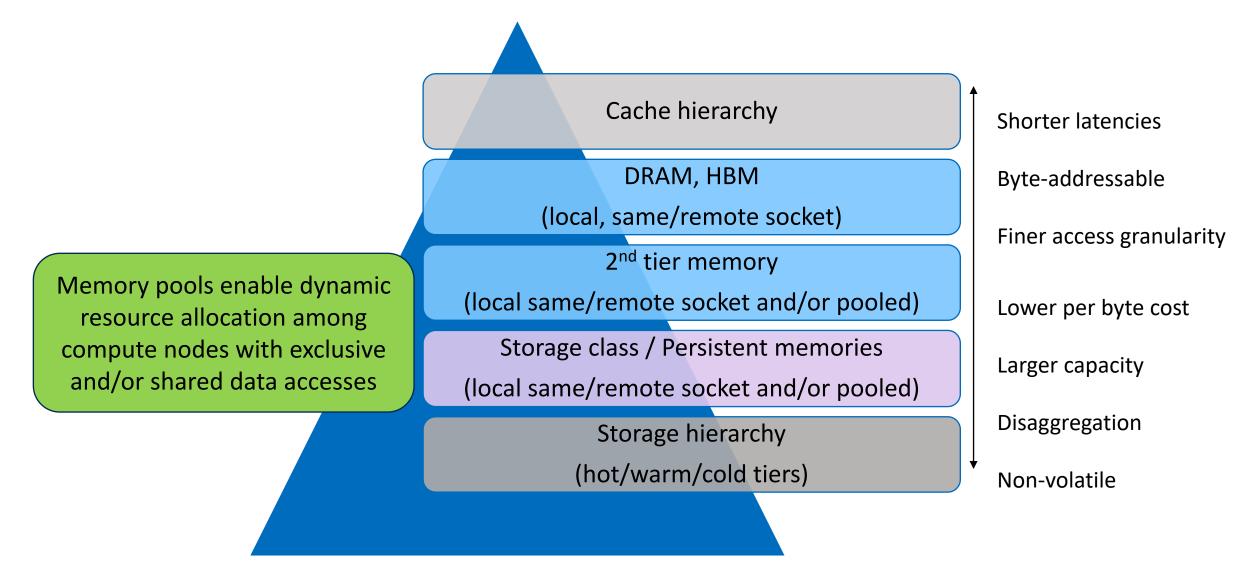
- Non-Uniform Memory Architecture
- Not all memory access is created equal

# nur	nact]	L —H															
avai	Lable	e: 4	nodes	(0-	-3)												
node	0 cp	bus:	0 1 2	3 4	45	6	78	9 :	10 1	11 1	12 1	13 1	14 1	15			
node	0 si	ize:	64057	MB													
node	0 f1	cee:	48756	MB													
node	1 cp	bus:	16 17	18	19	20	21	22	23	24	25	26	27	28	29	30	31
node	1 si	ize:	64003	MB													
node	1 fı	cee:	50473	MB													
node	2 cp	ous:															
node	2 si	ize:	25592	1 MI	3												
node	2 f1	cee:	25591	.8 MI	3												
node	3 cp	ous:															
node	3 si	ize:	25562	3 MI	3												
node	3 f1	cee:	25563	1 MI	3												
node	dist	tance	es:														
node	0	1	2	3													
0:	10	21	17	28													
1:	21	10	28	17													
2:	17	28	10	28													
3	28	17	28	10													

CXL Roadmap Drives Memory Hierarchy Innovation

CXL 1.1

Coherent memory expansion Boost capacity and/or bandwidth Pooling, CXL switches Improve overall TCO and memory utilization


CXL 2.0

CXL 3.0 Coherent memory sharing New and fast sharing of data

* Only a subset of CXL features and benefits are highlighted here.

CXL Enables More Memory and Hierarchy Options

Workload Performance Tuning Considerations

Memory Performance

- Characteristics: data rate, latency, read vs. write performance, access granularity, persistency. CXL adds variety, abstraction
- Memory channels, DIMMs per channel, module slots
- Capacity vs. Bandwidth boost. Interleaving options

NUMA, Affinity, Latency Optimization

- NUMA within socket, across socket, beyond compute node
- Compute and memory bandwidth allocation per NUMA node
- Scheduling processes to NUMA nodes. Dynamic realignment

Data Management

- Efficient tracking of hot/cold data, and migration among tiers
- Telemetries. Workload profiles
- Accelerator, compute-in-storage

- Understand that not all memory access is equal
- Developers need to understand and deal with differences
 - At the risk of inconsistent performance results
- Segregation
- Tiering
- Dynamic re-alignment

Segregation

System level assignment

- Assign VMs memory from a specific NUMA node
- Spread VMs across NUMA nodes and assign memory
- Assign processes memory from specific NUMA nodes

Application-based selection

Use libraries inside applications to tier memory

Assigning NUMA affinity in VMware

- Advanced settings on a VM configuration
- Without setting the affinity, VMware chooses memory, leading to unpredictable performance

Modify or add configuration parameters	as needed for experimen	tal features o	r as instructed by technica	l support. Er
lues will be removed (supported on ESXi 6.	0 and later).			
			2	
			ADD CONFIGURAT	ION PARA
Id New Configuration Params				
	Value			
lame	Value			
sched.mem.lpage.enable	TRUE			
numa.nodeAffinity	d			
Name	т	Value		
nvram		FGT-TIGE	R-14-39.nvram	
svga.present		TRUE		
pciBridgeC.present		TRUE		
ociBridge4.present		TRUE		
pciBridge4.virtualDev		pcieRootP	ort	

Configuration Parameters

Figure courtesy of Fortinet

X

Configuring VMs across NUMA Nodes

- Large VMs can split across NUMA nodes
- Memory affinity for each virtual CPU stays on node

CPU Topology *							
CPU	12						
Cores per Socket	6 V (1) Sockets: 2						
	The manual configuration for cores per socket might result in reduced X performance.						
CPU Hot Plug	Enable CPU Hot Add						
NUMA Nodes	2 ~ (1)						
	Cores per NUMA node: 6 The manual configuration for NUMA nodes might result in reduced X performance. X						
Device Assignment	Manually assign devices to NUMA nodes.						
	Device Name Y NUMA Node Y						
	: SCSI controller 0 Unassigned						
	: Network adapter 1 Unassigned						
	USB xHCl controller Unassigned						

Node-picking in Linux

numactl(8)

- Process level
- --cpunodebind
- --membind
- --localalloc
- --preferrednode
- --interleave

Application-level segregation

SNIA PMDK

- For persistent memory
- VMware presents pmem resources to VMs

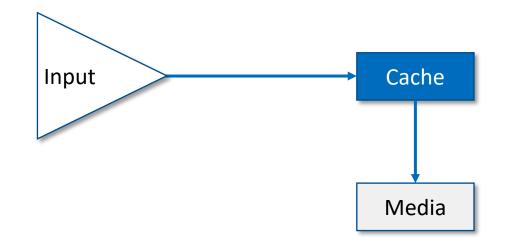
```
if (pmem2_config_set_required_store_granularity(cfg,
44
45
                               PMEM2_GRANULARITY_PAGE)) {
                       pmem2 perror("pmem2 config set required store granularity");
46
                       exit(1);
47
48
49
               if (pmem2_map_new(&map, cfg, src)) {
50
                       pmem2_perror("pmem2_map_new");
51
                       exit(1);
52
53
               }
54
               char *addr = pmem2_map_get_address(map);
55
               size_t size = pmem2_map_get_size(map);
56
57
               strcpy(addr, "hello, persistent memory");
58
59
               persist = pmem2_get_persist_fn(map);
60
61
               persist(addr, size);
```


- Hit-n-miss
- Promotion and demotion
- Complexity of tiering
 - How rapidly this becomes an unmanageable problem

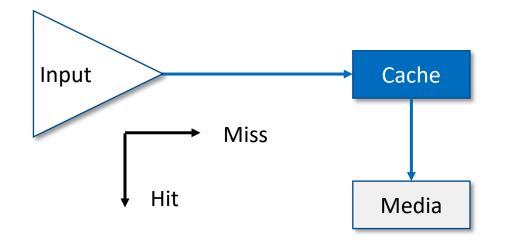
Hit or miss

- Populate based on use or prediction
- Variety of algorithms for lookup, allocation, eviction and aging
- Can be tuned for workload

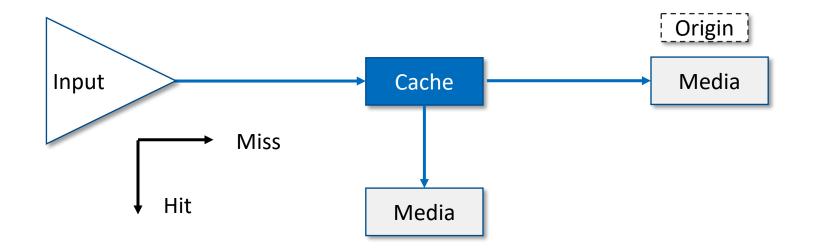
Cache



- Populate based on use or prediction
- Variety of algorithms for lookup, allocation, eviction and aging
- Can be tuned for workload



- Populate based on use or prediction
- Variety of algorithms for lookup, allocation, eviction and aging
- Can be tuned for workload



- Populate based on use or prediction
- Variety of algorithms for lookup, allocation, eviction and aging
- Can be tuned for workload

- Populate based on use or prediction
- Variety of algorithms for lookup, allocation, eviction and aging
- Can be tuned for workload

Promotion and demotion

- Less frequently used
- Uses less space
- Requires more data movement

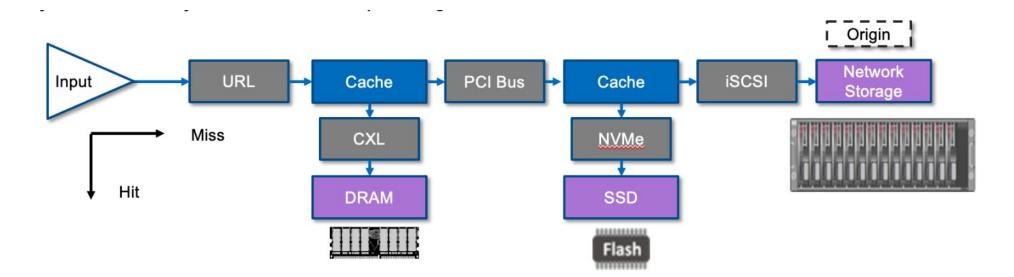
SDXI (Smart Data Accelerator Interface)

- Rapid memory to memory data mover
- SNIA working group
- "Most Innovative" at Flash Memory Summit in June 2023
- Tuesday's SDXI talk at SDC

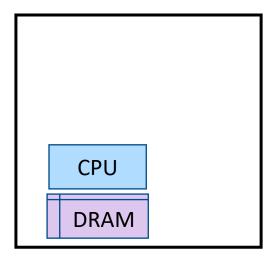
Built-in caching

- VMware automatic memory tiering
- Linux numactl(8) and allows built-in tiering
 - Promote/demote
 - Based on node distance

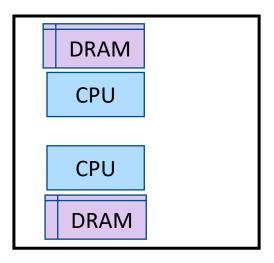
Summary	Monitor Configure	e Permissions	VMs	Datastores	Networks	Updates
0	Logical Processors:	96				
	NICs:	3				
	Virtual Machines:	1				
	Memory Tiering:	Hardware				
		DETAILS •				
	State:	Connecte				
	Uptime:	6 hours				


You can also view the size of DRAM and PMEM under Configure > Hardware > Overview > Memory.

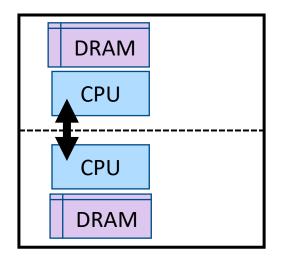
Summary	Monitor	Configure	Permissions	VMs	Datastores	Networks	Updates				
System Resource Reservation Firewall Services		ervation	Memory								
			Total	503.68 GB 385.17 MB							
Security	Security Profile System Swap		System								
System S			Virtual machines	503.3 GB Hardware (i)							
Packages			Memory Tiering								
Hardware		~	Tier 0	256 GB [DRAM (Cache)						
Overview	v		Tier 1	503 67 6	B PMem (Memor	V)					
Graphics				505.07 0	D Pinem (Memor	y/					

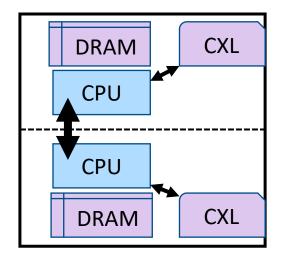

Multi-level caching

- Currently used in Content Delivery Networks
- Useful for new HPC and large-scale hosts for main memory

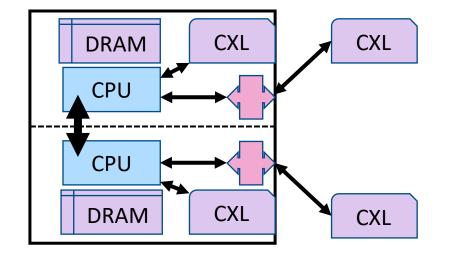


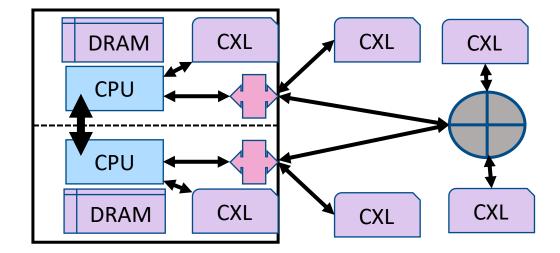
Multi-level caching within CXL hosts



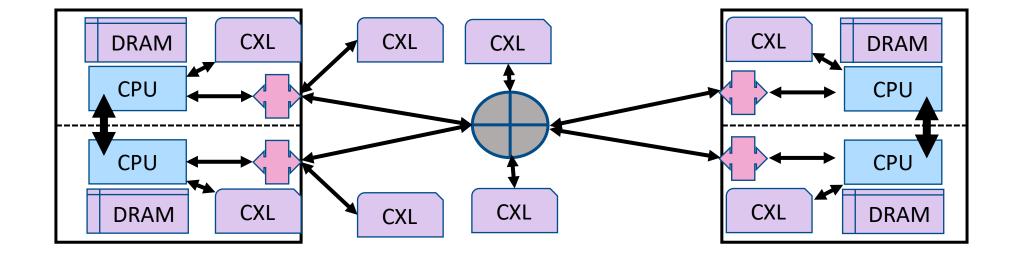


24 | ©2023 SNIA. All Rights Reserved.

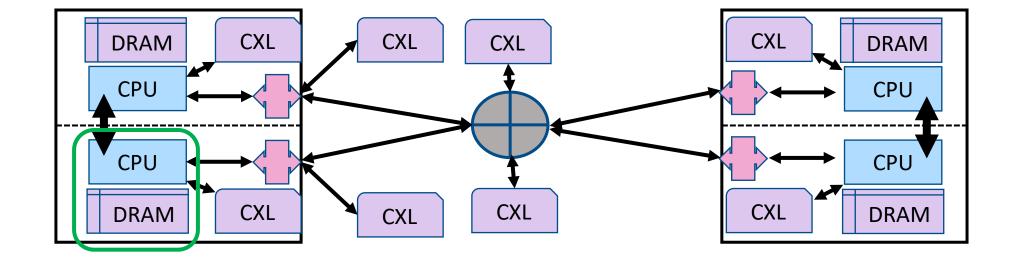

25 | ©2023 SNIA. All Rights Reserved.


26 | ©2023 SNIA. All Rights Reserved.

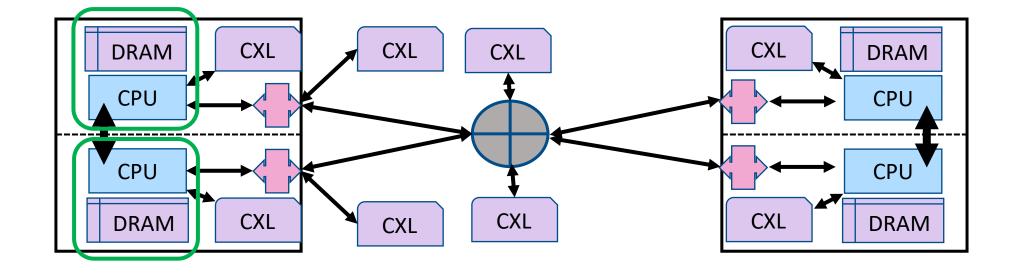
Multi-level caching within CXL hosts

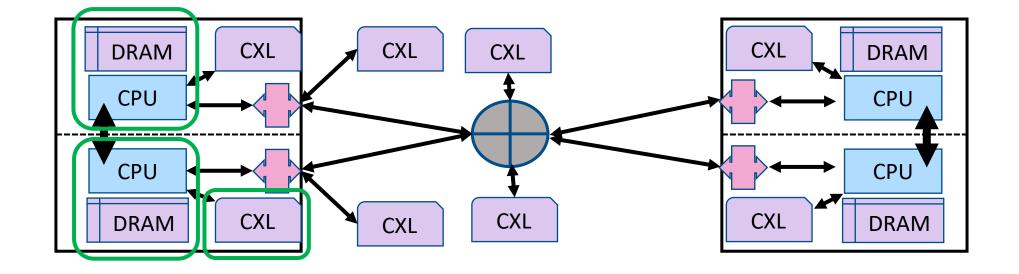


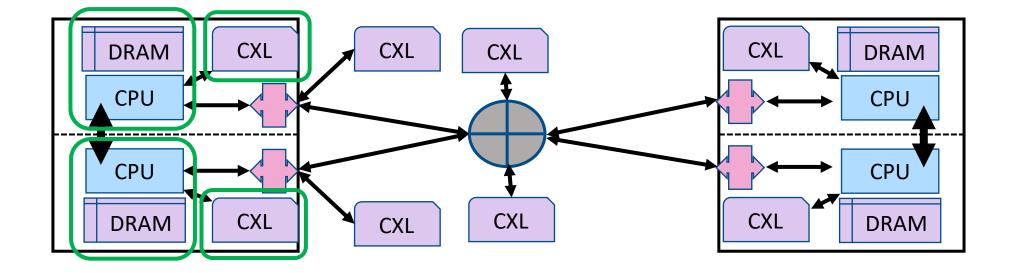
Multi-level caching within CXL hosts

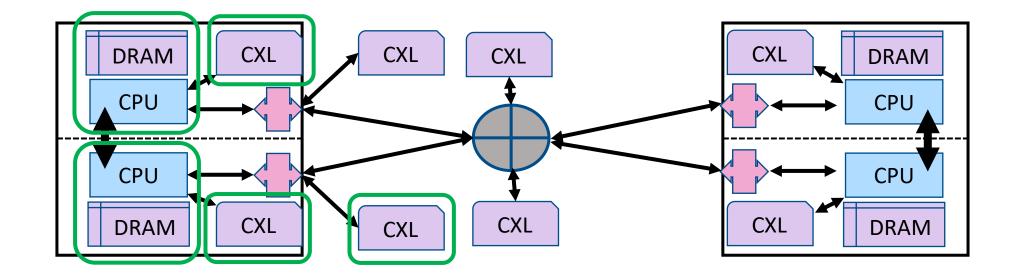


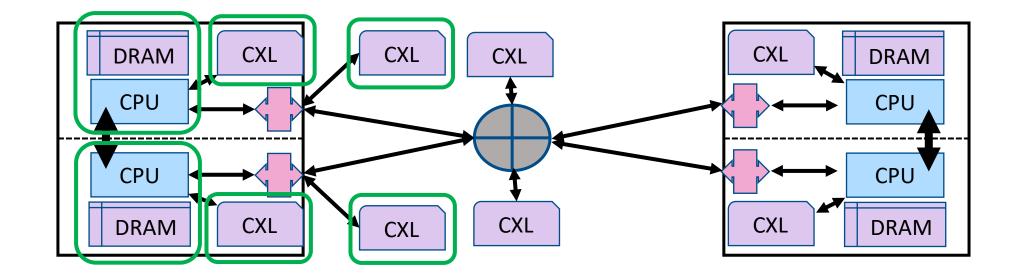
28 | ©2023 SNIA. All Rights Reserved.

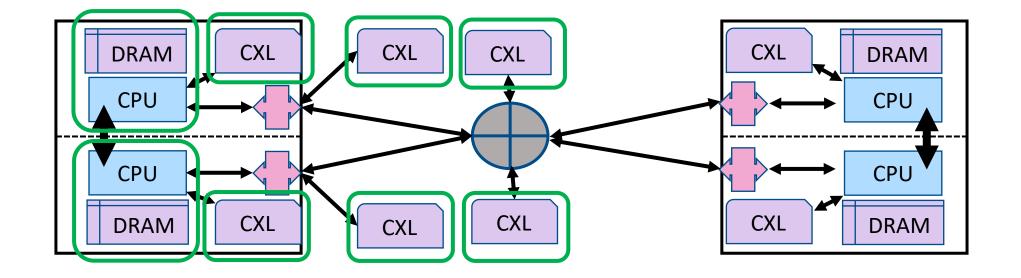


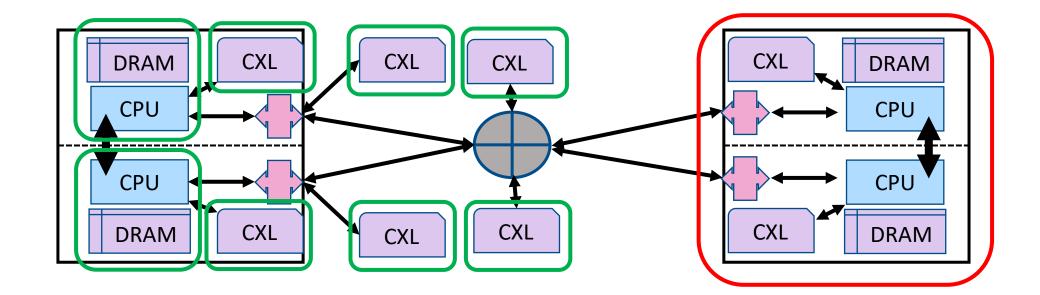



30 | ©2023 SNIA. All Rights Reserved.

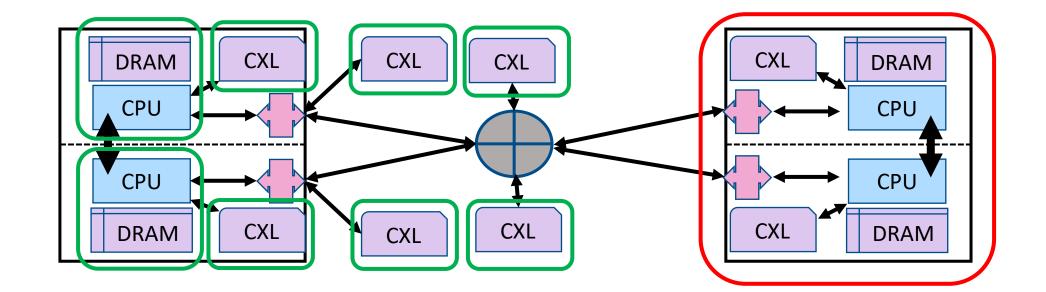








35 | ©2023 SNIA. All Rights Reserved.



36 | ©2023 SNIA. All Rights Reserved.

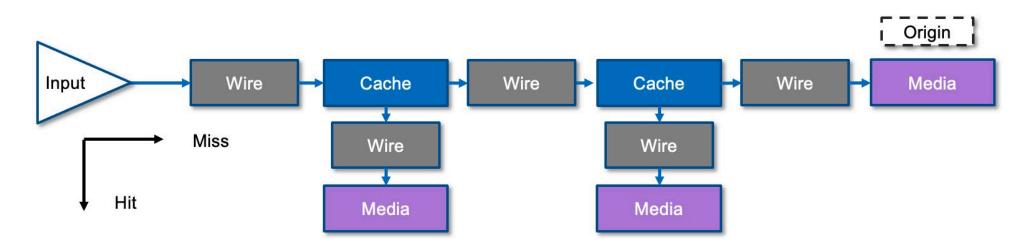
7 different NUMA nodes plus contention

Modeling and optimizing

- Workload dependent
- Static vs. dynamic reallocation

Workloads matter

- No artificial workloads
- Content delivery
- Inference


- Learning
- File serving

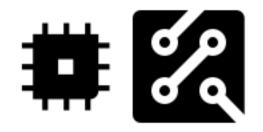
semop(8126470, [{0, -1, SEM_UNDO}], 1) = 0 semop(8126470, [{0, 1, SEM_UNDO}], 1) = 0 semop(8126470, [{0, -1, SEM_UNDO}], 1) = 0 semop(8126470, [{0, 1, SEM_UND0}], 1) = 0 semop(8126470, [{0, -1, SEM_UNDO}], 1) = 0 semop(8126470, [{0, 1, SEM_UNDO}], 1) = 0 poll([{fd=61, events=POLLIN}], 1, 3000) = 0 (Timeout) poll([{fd=61, events=POLLIN}], 1, 3000) = 0 (Timeout) semop(8126470, [{0, -1, SEM_UNDO}], 1) = 0 semop(8126470, [{0, 1, SEM UNDO}], 1) = 0 semop(8126470, [{0, -1, SEM_UNDO}], 1) = 0 semop(8126470, [{0, 1, SEM_UND0}], 1) = 0 semop(8126470, [{0, -1, SEM_UNDO}], 1) = 0 semop(8126470, [{0, 1, SEM_UNDO}], 1) = 0 poll([{fd=61, events=POLLIN}], 1, 3000) = 0 (Timeout) poll([{fd=61, events=POLLIN}], 1, 3000) = 0 (Timeout) semop(8126470, [{0, -1, SEM_UNDO}], 1) = 0 semop(8126470, [{0, 1, SEM_UNDO}], 1) = 0 semop(8126470, [{0, -1, SEM_UNDO}], 1) = 0 semop(8126470, [{0, 1, SEM_UNDO}], 1) = 0 semop(8126470, [{0, -1, SEM_UNDO}], 1) = 0 semop(8126470, [{0, 1, SEM_UNDO}], 1) = 0 poll([{fd=61, events=POLLIN}], 1, 3000) = 0 (Timeout) poll([{fd=61, events=POLLIN}], 1, 3000) = 0 (Timeout) semop(8126470, [{0, -1, SEM_UNDO}], 1) = 0 semop(8126470, [{0, 1, SEM_UNDO}], 1) = 0 semop(8126470, [{0, -1, SEM_UND0}], 1) = 0 semop(8126470, [{0, 1, SEM_UNDO}], 1) = 0 semop(8126470, [{0, -1, SEM_UNDO}], 1) = 0 semop(8126470, [{0, 1, SEM_UNDO}], 1) = 0 [poll([{fd=61, events=POLLIN}], 1, 3000^Cstrace: Process 14046 detached

Static Analysis with Simulations

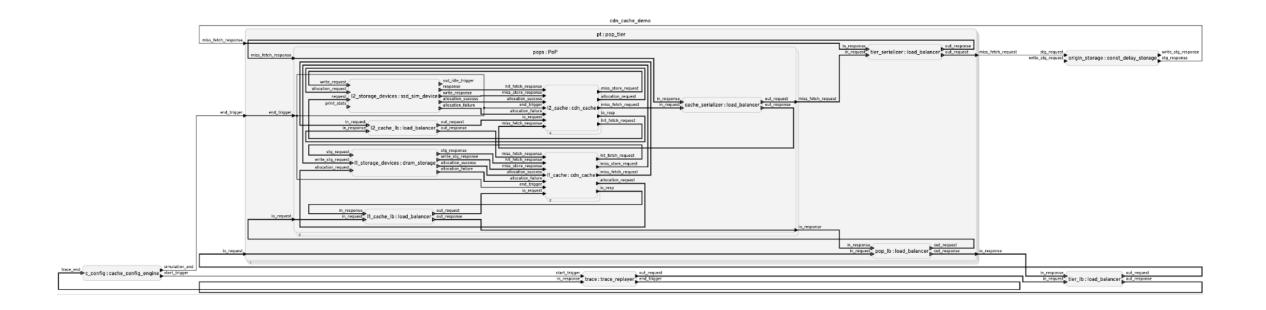
- Determine initial configurations
- Build behavioral simulators
- Mix pre-built components and custom as needed

•

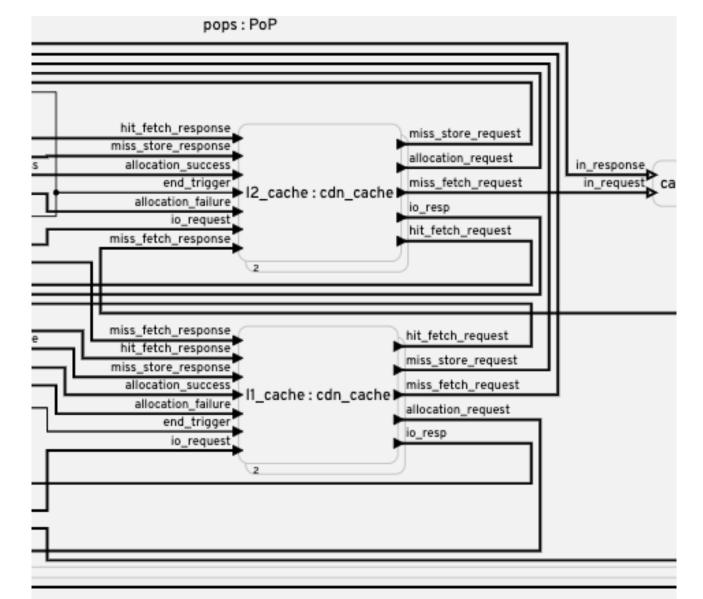
SD[®]



Cheaper, faster, more flexible than system building


- Cheaper, faster, more flexible than system building
- Engineering design uses simulations, why not software?

Code as System Simulation


- Cheaper, faster, more flexible than system building
- Engineering design uses simulations. Why not software?

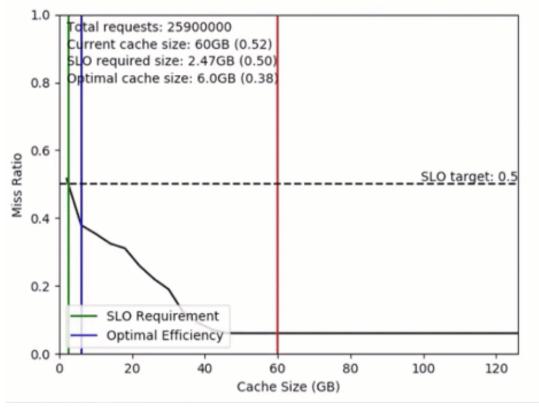
Details, details

- Each component can be modeled
- Variables are easy to introduce

Results are easy to compare

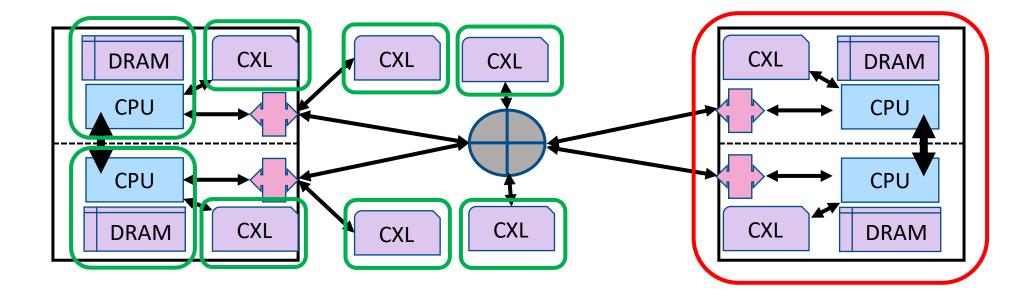
- Run millions of runs
- More variables = more options

AVG RTT (microseconds) L1:urlhashLB, LRU; L2:urlhashLB, LRU


					Num	ber of	L1 ca	ches				
		1	2	3	4	5	6	, 7	8	9	10	-
		76318.700	74428.500	72901.600	70929.100	69798.700		67696.800	66969.100	66322.400	65513.000	- 66000
	- 7	76550.700	74428.500	72901.600	70929.100	69798.700		67696.800	66969.100	66322.400	65513.000	- 68000
2	m -	77460.700	74076.400	72901.600	70929.100	69798.700		67734.000	66969.100	66322.400	65513.000	
Number	4 -	78335.600	74152.200	73351.500	70929.100	69798.700		67786.600	66969.100	66322.400	65513.000	- 70000
er of L	- ت	78335.600	74152.200	73351.500	70967.800	69798.700		67786.600	66969.100	66314.800	65513.000	- 72000
.2 cac	9 -	78599.100	74134.600	73316.300	70965.800	69705.000		67786.600	66969.100	66322.400	65513.000	
caches	2	78423.900	74372.400	73521.300	70909.600	69709.500		67696.800	66969.100	66314.800	65513.000	- 74000
	∞ -	78423.900	74398.400	73336.100	70945.800	69708.300		67786.600	66969.100	66318.500	65513.000	- 76000
	o -	78492.200	74341.000	73483.100	71068.300	69840.000		67760.800	67041.600	66322.400	65513.000	
	10	78433.700	74424.900	73339.200	70878.100	69759.200	68541.900	67765.800	67036.000	66314.300	65513.000	- 78000

Dynamic reconfiguration in running environment

Useful for running varied workloads
Make the most of existing hardware
Limited to software and sizing changes



Working at enterprise scale

- 100+ cores
- 100+ PCIe lanes
 - CXL capabilities
 - Network capabilities
 - Not limited to memory or IO bound loads
- Clusters of numerous nodes

What the future holds

7 different NUMA nodes plus contention

CXL offers a lot of flexibility

CXL offers a lot of flexibility and complexity

- CXL offers a lot of flexibility and complexity
- OS vendors are helping

- CXL offers a lot of flexibility and complexity
- OS vendors are helping
- More flexibility requires more system design

- CXL offers a lot of flexibility and complexity
- OS vendors are helping
- More flexibility requires more system design
- Optimized system design requires simulations

RESULTS WITH MAGNITION

As an example, a current customer has achieved the following measurable outcomes with Magnition:

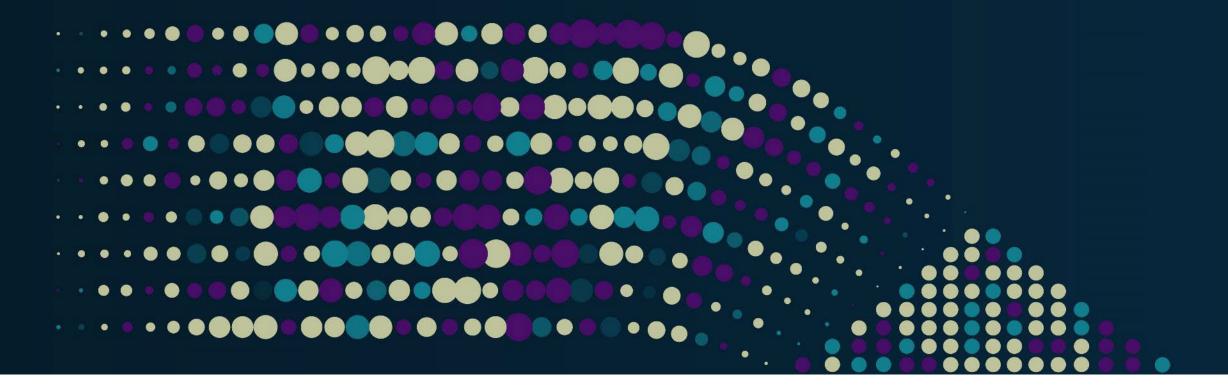
Experiments per day per engineer

- Without Magnition: **2**
- With Magnition: 50,000+

Parameter variations tested before prod release

- Without Magnition: 50
- With Magnition: **1,000,000+**

Workload performance improvement using our products to find **optimal out-of-the-box settings**: **10-50%+**



AMD Summary

AMD together we advance_

- CXL is a high-performance interconnect standard which has strong industry support and roadmap for driving system architecture and memory hierarchy innovation
- AMD is a Board of Director of the CXL Consortium, and supports CXL in current and roadmap products
- AMD works with a rich set of CXL eco-system partners to drive innovative solutions for a variety of applications especially in storage segment

Please take a moment to rate this session.

Your feedback is important to us.

Section Title

Section Subtitle

65 | ©2021 Storage Developer Conference ©. Insert Company Name Here. All Rights Reserved.

• ۲ ۲ • • • • • • • • • • ۲ • 🕘 • • . ۲ •

Section Title

Section Subtitle

Light Slide Title

Bullets 1

- Bullets 2
 - Bullets 3
 - Bullets 4
 - Bullets 5

Dark Slide Title

Bullets 1

- Bullets 2
 - Bullets 3
 - Bullets 4
 - Bullets 5

Considerations for Hierarchy Options

- Performance, read vs. write, granularity
- Latencies
- TCO
- Software tier management
- Dynamic changes flexibility
- Mix of different parts with different performance characteristics
- Interleaving
- Optimization focus, capacity vs. bandwidth
- Persistency
- NUMA

