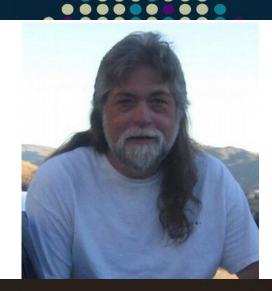
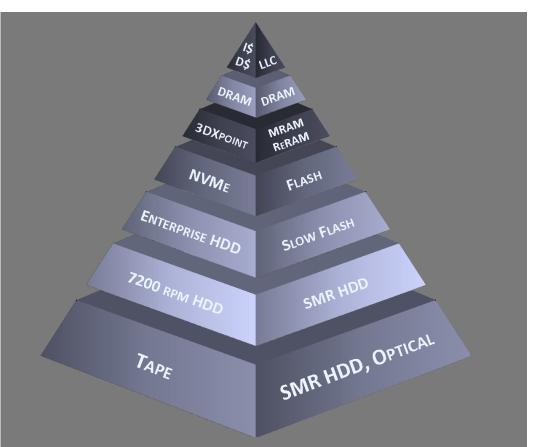
STORAGE DEVELOPER CONFERENCE


Andy Banta Storage Janitor, Magnition Inc @andybanta

Optimizing Complex Hierarchical Memory Systems Through Simulations

Andy


Banta

Magnition.io (Consultant) SolidFire (VMware development) DataGravity (Container exploitation lead) VMware (iSCSI Tech Lead) Sun Microsystems (Initial Fibre Channel development) Patent, early distributed network projects, data acquisition @andybanta

The Challenge

Modern compute and storage system use multiple layers interacting in multiple ways

HOW CAN CURRENT TECHNOLOGY ACHIEVE...

- Latency control
- Multi-tenant thrash remediation
- Correct tier sizing
- Workload-awareness
- Hot working set management
- Latency and throughput SLAs
- Memory capacity planning

AS MORE HARDWARE LAYERS ADD COMPLEXITY?

ABOUT MAGNITION

STORAGE PERFORMANCE, REINVENTED

World's First Real-Time Data Placement Optimization Patented technology is a first for the industry.

Proven At-Scale, with Production Workloads

Use customer traces to fully test diverse workloads in real-time.

Peer-Reviewed and Published in Leading Journals

Multiple industry articles published and reviewed.

Award-Winning, Patented Technology 3-time award winner for innovative technology.

• • • • • • • • • • • • ۲ •

Stimulating Simulations

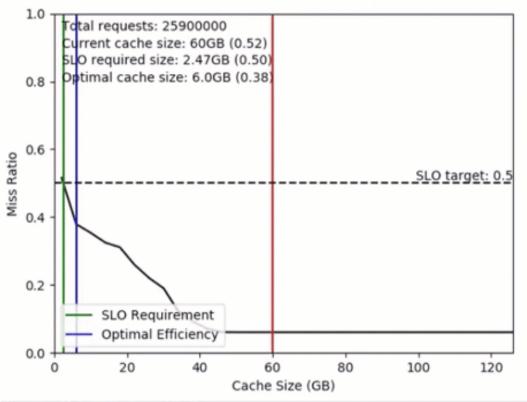
Our Approach to Simulations

5 | ©2023 SNIA. All Rights Reserved.

A different approach to optimization

- Compose simulations of complex memory and storage
- +Break the simulation into components
- Allows the components to be assembled like building blocks
- Provide reasonable but constrained set of variables
- Run simulations with synthetic data or actual IO traces

Value of simulations


Faster and easier to prototype
Minimal up-front hardware spend
Great opportunities for optimizations
Loads of simulations are done at ASIC level
The same practices should apply to

The same practices should apply to component and software levels

Choose three

- 1. Lower cost
- 2. Higher speed
- 3. More flexibility

Provide a framework to connect components

Lingua Franca provides this

✦Reactors represent system pieces

+Library of components ready to use

Allows clients to build their own modules

Basic set of building blocks

+Cache

Media

+Wire

Provide a framework to connect components

Lingua Franca provides this

Reactors represent system pieces

+Library of ready components for use

+Allows clients to build their own modules

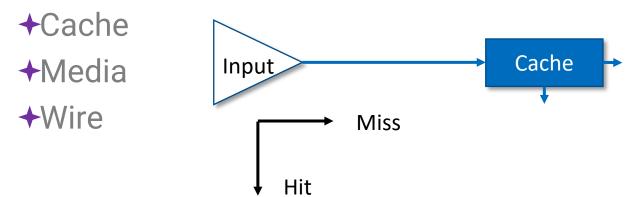
Basic set of building blocks

+Cache

Media

✦Wire

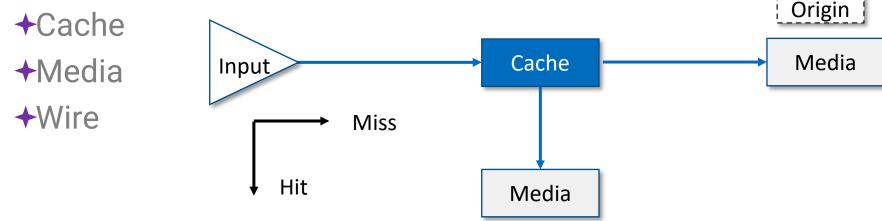
Provide a framework to connect components


Lingua Franca provides this

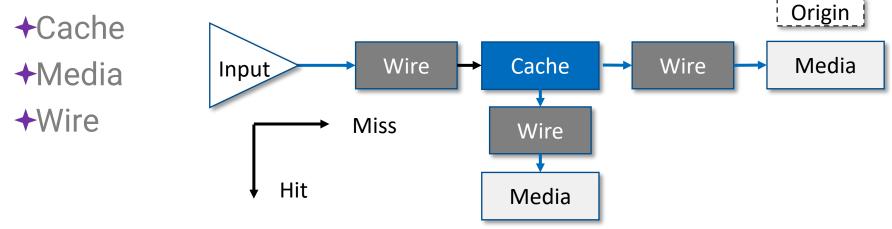
Reactors represent system pieces

Library of ready components for use

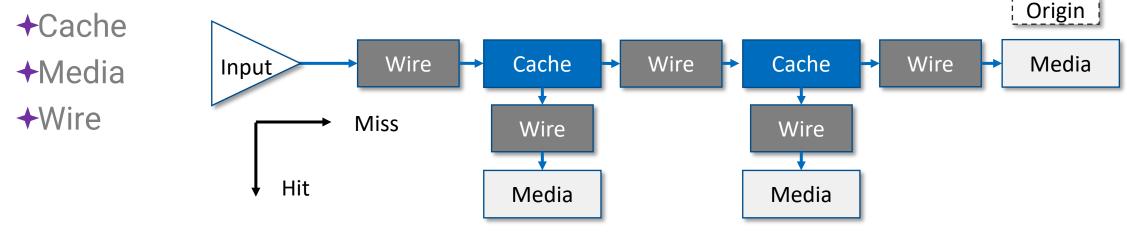
Allows clients to build their own modules


Basic set of building blocks

Provide a framework to connect components


- Lingua Franca provides this
- Reactors represent system pieces
- +Library of ready components for use
- Allows clients to build their own modules
- Basic set of building blocks

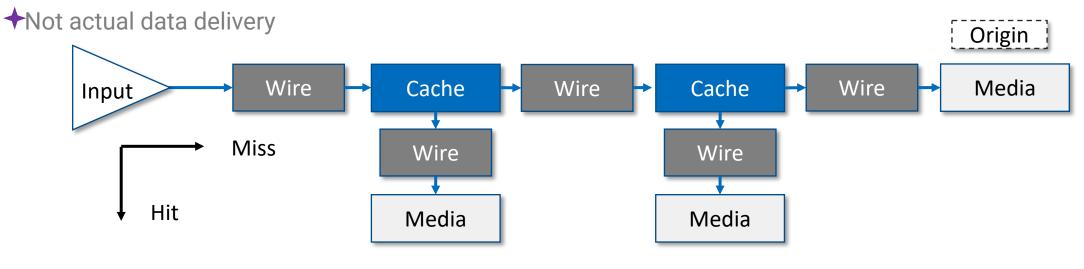
Provide a framework to connect components


- Lingua Franca provides this
- Reactors represent system pieces
- +Library of ready components for use
- Allows clients to build their own modules
- Basic set of building blocks

Provide a framework to connect components

- Lingua Franca provides this
- Reactors represent system pieces
- +Library of ready components for use
- Allows clients to build their own modules
- Basic set of building blocks

Memory, disk, cloud storage
Introduce distinct delays


✦MQSim

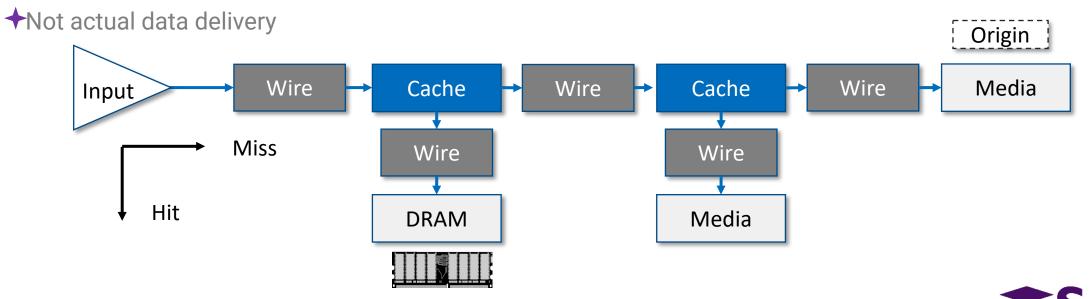
✦Parallel access

✦Contention delays

✦Queueing

Only need to simulate delay

Memory, disk, cloud storage
Introduce distinct delays


✦MQSim

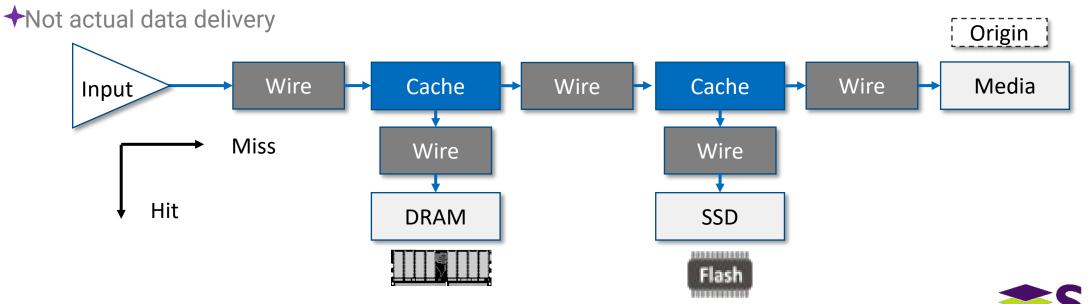
✦Parallel access

✦Contention delays

✦Queueing

Only need to simulate delay

Memory, disk, cloud storage
Introduce distinct delays


✦MQSim

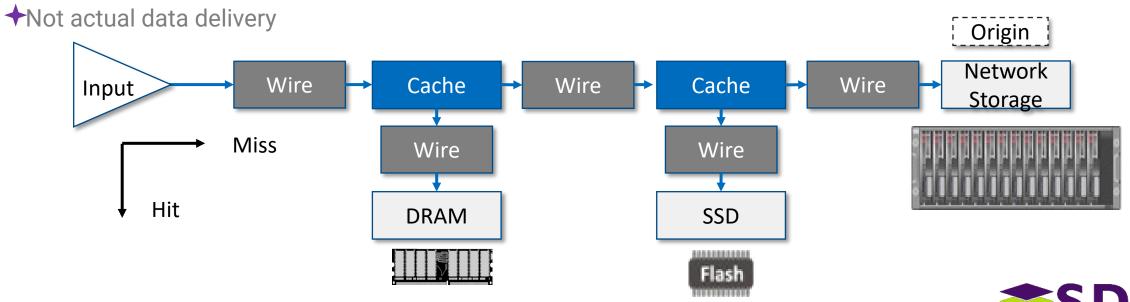
✦Parallel access

✦Contention delays

✦Queueing

Only need to simulate delay

Memory, disk, cloud storage
Introduce distinct delays

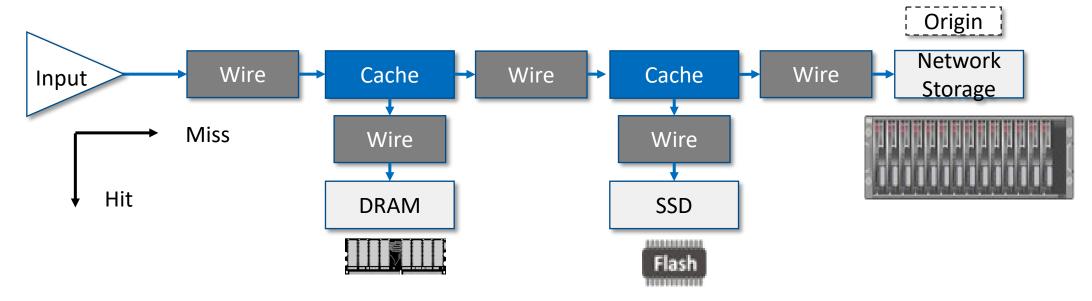

✦MQSim

✦Parallel access

✦Contention delays

✦Queueing

Only need to simulate delay

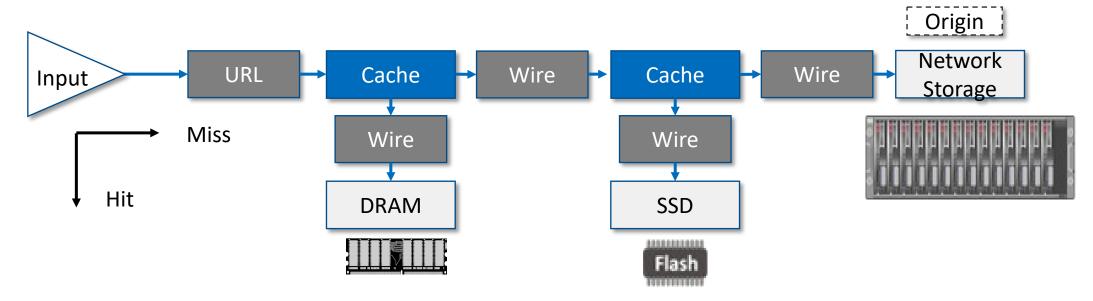


23

Memory bus, disk controller, network
 Can multiplex and change form of IO request
 Even type of wire can be variable

✦Type of memory bus

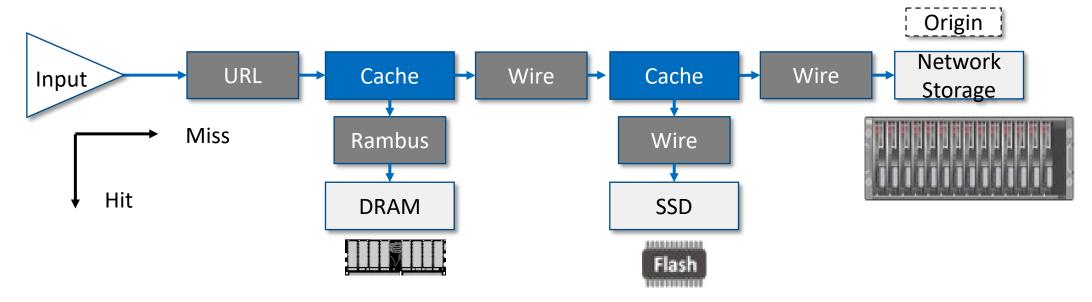
✦Hops in network topology



Memory bus, disk controller, network
 Can multiplex and change form of IO request
 Even type of wire can be variable

✦Type of memory bus

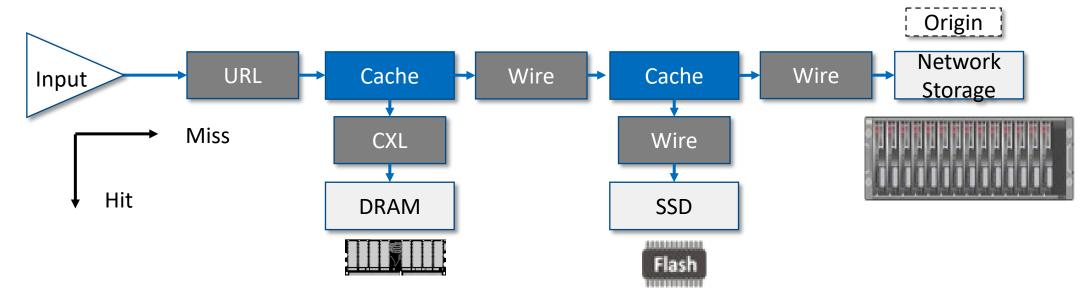
✦Hops in network topology



Memory bus, disk controller, network
 Can multiplex and change form of IO request
 Even type of wire can be variable

✦Type of memory bus

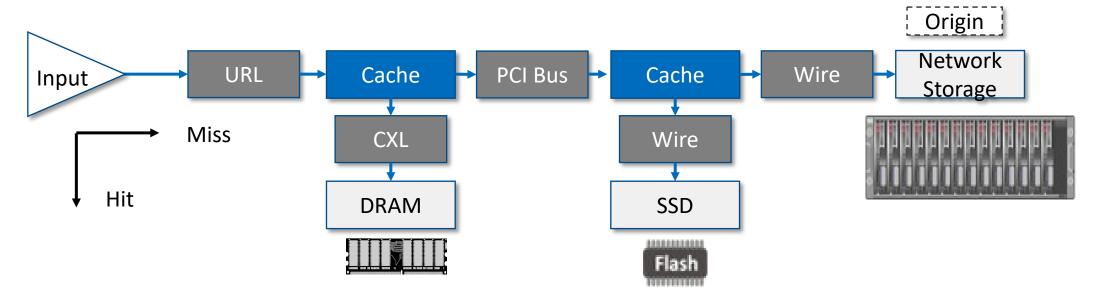
✦Hops in network topology



Memory bus, disk controller, network
 Can multiplex and change form of IO request
 Even type of wire can be variable

✦Type of memory bus

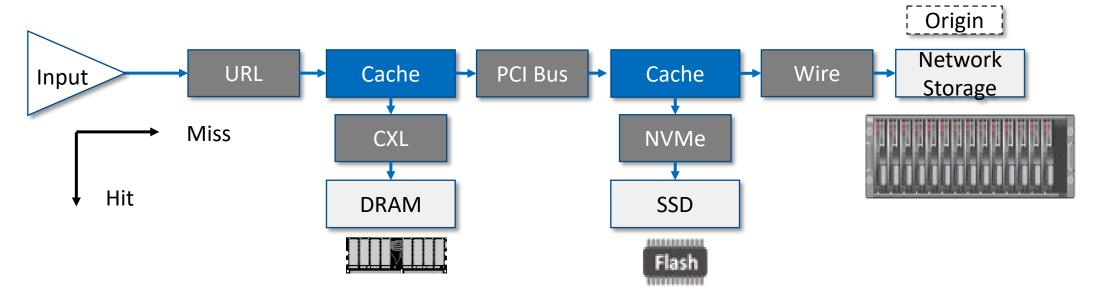
✦Hops in network topology



Memory bus, disk controller, network
 Can multiplex and change form of IO request
 Even type of wire can be variable

✦Type of memory bus

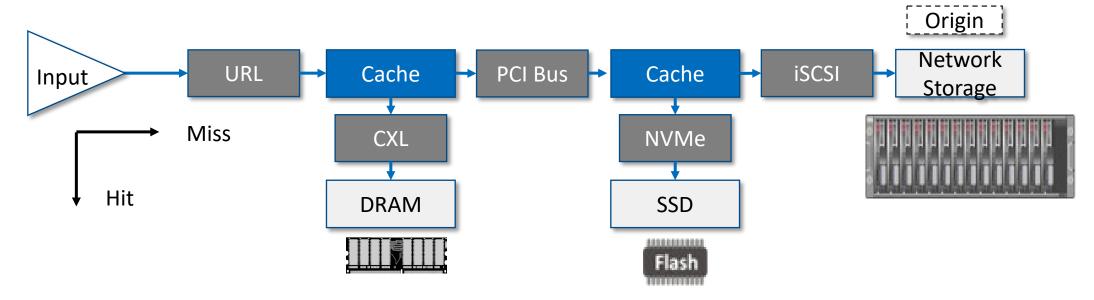
✦Hops in network topology



Memory bus, disk controller, network
 Can multiplex and change form of IO request
 Even type of wire can be variable

✦Type of memory bus

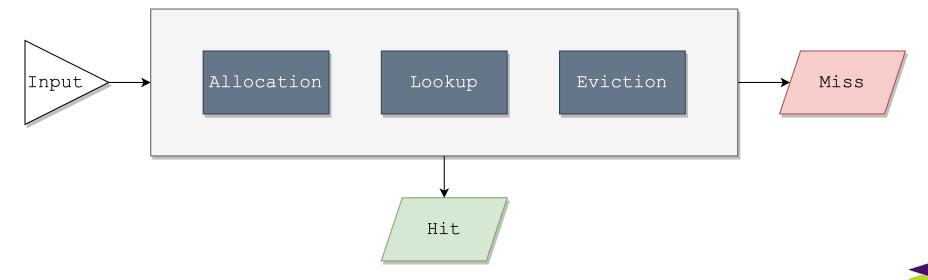
✦Hops in network topology



Memory bus, disk controller, network
 Can multiplex and change form of IO request
 Even type of wire can be variable

✦Type of memory bus

✦Hops in network topology


Gas, Grass or Cache

No free ride with hierarchical memory

Cache component

Easily build basics like lookups, allocation, and eviction
One (or more) hit path
One (or more) miss path
Many choices for variability

Cache allocation

- Another building block
- Variable vs fixed
 - Object or Block
- Memory schemes
 - Slab, memalloc, persistent memory
- SSD fill buffers

Lookup

Hashing and locating algorithm

Miss algorithms

- Trigger allocation or eviction
- Trigger speculative fill
- Pending misses
- Ageing
 - Dependent on eviction
- Element invalidation

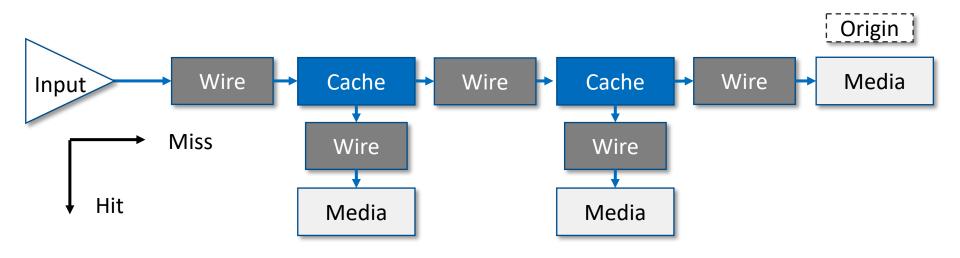
.

Evictions

- Who to evict
- Culling invalidations
- SSD eviction

• • • • ۲ • • ۲

Duplicity is tricky


Two-tier cache issues

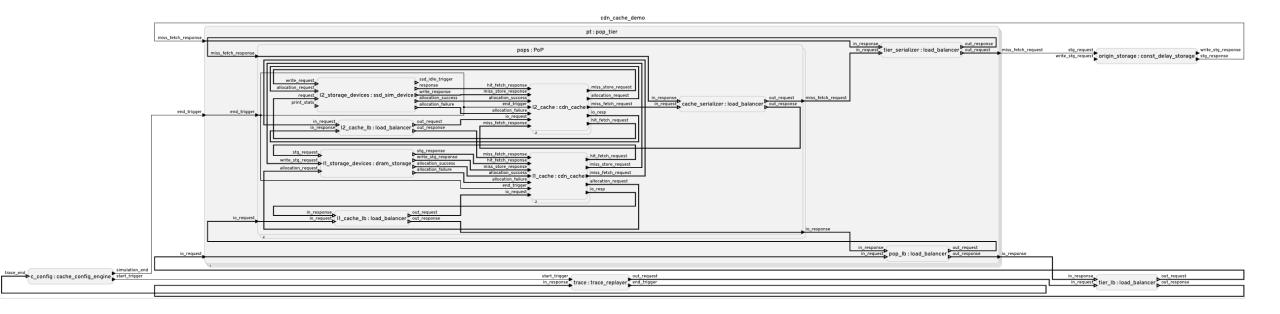
30 | ©2023 SNIA. All Rights Reserved.

Multi-layer cache complexity

- All of these variables become a huge matrix with multiple layers
 - Cache algorithms
 - Media types
 - Interconnect type
 - Shared vs distributed

Simulation Summation

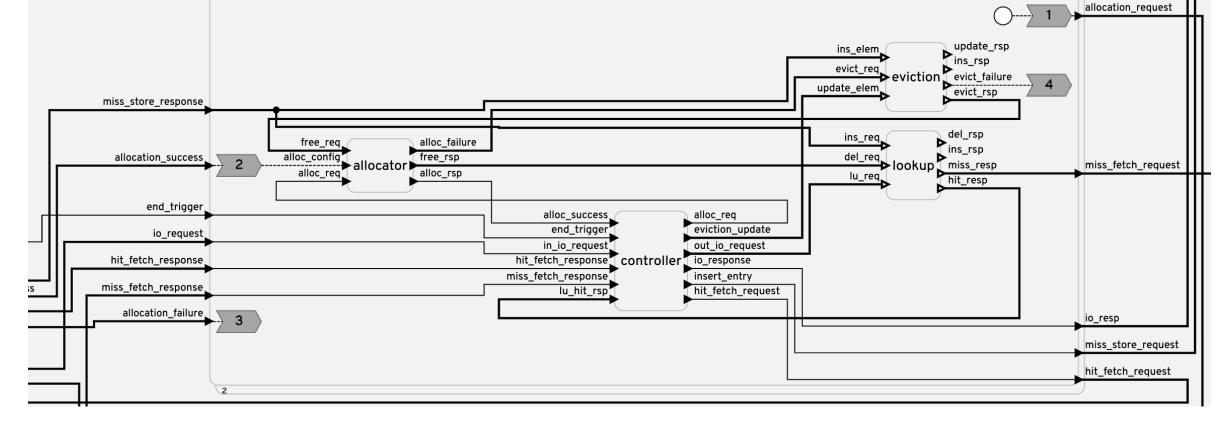
Modeling and collecting results for a two-layer cache



32 | ©2023 SNIA. All Rights Reserved.

GUI demo

Show the graphical representation of the two case configs


Video to be added

34 | ©2023 SNIA. All Rights Reserved.

cdn_cache

Cache drilldown

UI demo

Simulation code

 UI generated from code

 Code simulates component eactor cdn_cache (bank_index:int(0), pop_tier_id:int(0), pop_id:int(0), n_ports:int(1), cache_level:string("L1"), cache_size:uint32_t(4096), page_size:uint32_t(input io_request:cdn_cache_request_t; output io_resp:cdn_cache_response_t; output hit_fetch_request:cdn_cache_request_t; input hit_fetch_response:cdn_cache_response_t; output miss_fetch_request:cdn_cache_request_t; input miss_fetch_response:cdn_cache_response_t; output miss_store_request:p_cdn_cache_entry_t; input miss_store_response:p_cdn_cache_entry_t; output allocation_request:uint32_t; input allocation_success:uint64_t; input allocation_failure:int; input end_trigger:uint32_t; logical action sch_response(0):cdn_cache_response_t; logical action sch_eviction(0):cdn_cache_request_t; logical action sch_insertions(0):cdn_cache_entry_t*; state free_space:uint32_t(0); CacheCtrl = new controller<int> (cache_level = cache_level, name = "cache_controller", pop_tier_id = pop_tier_id, pop_id = pop_id, cache_id = bank_index, log LookUp = new lookup<cdn cache_request_t, p_cdn_cache_entry_t, cdn_response_tuple_t> (n_ports = 1, log_level = {=LOG_DEBUG_LEVEL=}); Eviction = new eviction<p_cdn_cache_entry_t, cdn_cache_request_t, cdn_response_tuple_t> (evict_methods = {=&lru_eviction_methods=}, n_ports = 1, eviction_typ Allocator = new allocator<cdn_cache_request_t, p_cdn_cache_entry_t, cdn_response_tuple_t> (log_level = {=LOG_DEBUG_LEVEL=});

Workloads matter

- No artificial workloads
- Content delivery
- Multiple sources
- (Need a CDN trace, not a syscall trace)

semop(8126470, [{0, -1, SEM_UNDO}], 1)	=	0			
semop(8126470, [{0, 1, SEM_UNDO}], 1)		0			
semop(8126470, [{0, 1, SEM_UNDO}], 1)	=	0			
semop(8126470, [{0, -1, SEM_UNDO}], 1)	=	0			
semop(8126470, [{0, 1, SEM_UNDO}], 1)	=	0			
poll([{fd=61, events=POLLIN}], 1, 3000)	=	0	(Tim	eout)	
poll([{fd=61, events=POLLIN}], 1, 3000)	=	0	(Tim	eout)	
semop(8126470, [{0, -1, SEM_UNDO}], 1)	=	0			
semop(8126470, [{0, 1, SEM_UNDO}], 1)	=	0			
semop(8126470, [{0, -1, SEM_UNDO}], 1)	=	0			
semop(8126470, [{0, 1, SEM_UNDO}], 1)	=	0			
semop(8126470, [{0, -1, SEM_UNDO}], 1)					
semop(8126470, [{0, 1, SEM_UNDO}], 1)	=	0			
poll([{fd=61, events=POLLIN}], 1, 3000)		0	(Tim	eout)	
poll([{fd=61, events=POLLIN}], 1, 3000)	=	0	(Tim	eout)	
semop(8126470, [{0, -1, SEM_UNDO}], 1)	=	0			
semop(8126470, [{0, 1, SEM_UNDO}], 1)	=	0			
semop(8126470, [{0, 1, SEM_UNDO}], 1)	=	0			
semop(8126470, [{0, -1, SEM_UNDO}], 1)					
semop(8126470, [{0, 1, SEM_UNDO}], 1)	=	0			
poll([{fd=61, events=POLLIN}], 1, 3000)	=	0	(Tim	eout)	
poll([{fd=61, events=POLLIN}], 1, 3000)	=	0	(Tim	eout)	
semop(8126470, [{0, -1, SEM_UNDO}], 1)	=	0			
semop(8126470, [{0, 1, SEM_UNDO}], 1)	=	0			
semop(8126470, [{0, -1, SEM_UNDO}], 1)					
semop(8126470, [{0, 1, SEM_UNDO}], 1)	=	0			
semop(8126470, [{0, -1, SEM_UNDO}], 1)		0			
semop(8126470, [{0, 1, SEM_UNDO}], 1)	=	0			
[poll([{fd=61, events=POLLIN}], 1, 3000^C	Cst	tra	ace:	Process	14046

detached

Matrix of results

- Number of PoPs
- Different L1 vs L2 algorithms

Miss Ratio														
L1:randLB, LRU; L2:urlhashLB, LRU														
10	- 0.816	0.809	0.807	0.806	0.802	0.799	0.796	0.795	0.792	0.790	- 0.975			
6	- 0.821	0.815	0.812	0.811	0.806	0.804	0.803	0.803	0.797	0.796	- 0.950			
ω	- 0.832	0.823	0.822	0.821	0.817	0.815	0.812	0.811	0.808	0.804	- 0.950			
caches	- 0.846	0.837	0.834	0.832	0.828	0.827	0.825	0.822	0.818	0.816	- 0.925			
° 2	- 0.853	0.843	0.844	0.843	0.837	0.833	0.830	0.831	0.827	0.824	- 0.900			
Number of 4 5	- 0.868	0.861	0.858	0.858	0.853	0.851	0.846	0.845	0.840	0.838	- 0.875			
Num 4	- 0.886	0.881	0.879	0.874	0.871	0.867	0.864	0.862	0.856	0.854	- 0.850			
m	- 0.912	0.905	0.901	0.897	0.890	0.885	0.882	0.881	0.876	0.871				
7	- 0.950	0.939	0.931	0.924	0.918	0.914	0.910	0.908	0.905	0.900	- 0.825			
Ч	- 0.990	0.970	0.961	0.956	0.952	0.949	0.946	0.944	0.942	0.940	- 0.800			
	1	2	3	4 Num	ہٰ ber of	⁶ L1 ca	ל ches	8	9	10				

SD@

Matrix of results

- Number of PoPs
- Different L1 vs L2 algorithms

Miss Ratio L1:urlhashLB, LRU; L2:urlhashLB, LRU												
10	- 0.816	0.867	0.906	0.928	0.945	0.959	0.964	0.976	0.980	0.987		- 1.000
ი	- 0.821	0.876	0.914	0.936	0.952	0.966	0.970	0.979	0.987	0.986		- 0.975
ω	- 0.832	0.887	0.924	0.946	0.961	0.973	0.976	0.988	0.988	0.991		- 0.950
caches	- 0.846	0.900	0.937	0.957	0.970	0.979	0.987	0.989	0.992	0.993		
L2 6	- 0.853	0.910	0.947	0.966	0.977	0.989	0.987	0.993	0.995	0.996		- 0.925
of	- 0.868	0.925	0.960	0.976	0.989	0.991	0.992	0.996	0.997	0.998		- 0.900
Numk 4	- 0.886	0.945	0.973	0.989	0.992	0.995	0.995	0.999	0.998	0.999		- 0.875
m	- 0.912	0.965	0.991	0.993	0.996	0.998	0.998	0.999	0.999	0.999		
7	- 0.950	0.990	0.996	0.999	0.999	1.000	0.999	1.000	1.000	1.000		- 0.850
Ч	- 0.993	0.999	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000		- 0.825
1 2 3 4 5 6 7 8 9 10 Number of L1 caches												

Heat map

Ability to compare sets of results

Miss Ratio Difference (L1 randLB vs. urlhashLB)													
10	0.000	-0.059	-0.100	-0.122	-0.143	-0.159	-0.168	-0.181	-0.188	-0.198			0.000
o -	0.000	-0.061	-0.102	-0.125	-0.146	-0.161	-0.167	-0.176	-0.190	-0.190		-	0.025
- ∞	0.000	-0.063	-0.102	-0.125	-0.144	-0.158	-0.165	-0.178	-0.180	-0.186			0.050
ches	0.000	-0.062	-0.102	-0.124	-0.142	-0.152	-0.162	-0.167	-0.174	-0.177			0.075
Number of L2 caches	0.000	-0.066	-0.103	-0.123	-0.140	-0.156	-0.157	-0.162	-0.168	-0.172			
ber of 5	0.000	-0.063	-0.102	-0.118	-0.137	-0.140	-0.146	-0.150	-0.156	-0.160			0.100
Num 4	0.000	-0.064	-0.094	-0.115	-0.121	-0.128	-0.132	-0.137	-0.142	-0.144			0.125
m -	0.000	-0.060	-0.090	-0.096	-0.107	-0.114	-0.116	-0.118	-0.123	-0.128			0.150
- 7	0.000	-0.051	-0.066	-0.075	-0.081	-0.086	-0.089	-0.092	-0.095	-0.100			0.175
	-0.003	-0.028	-0.038	-0.044	-0.048	-0.051	-0.054	-0.056	-0.058	-0.060			
1 2 3 4 5 6 7 8 9 10 Number of L1 caches													

• • • • • • • • • • •

Solving the Halting Problem

Wrap up and conclusions

40 | ©2023 SNIA. All Rights Reserved.

RESULTS WITH MAGNITION

As an example, a current customer has achieved the following measurable outcomes with Magnition:

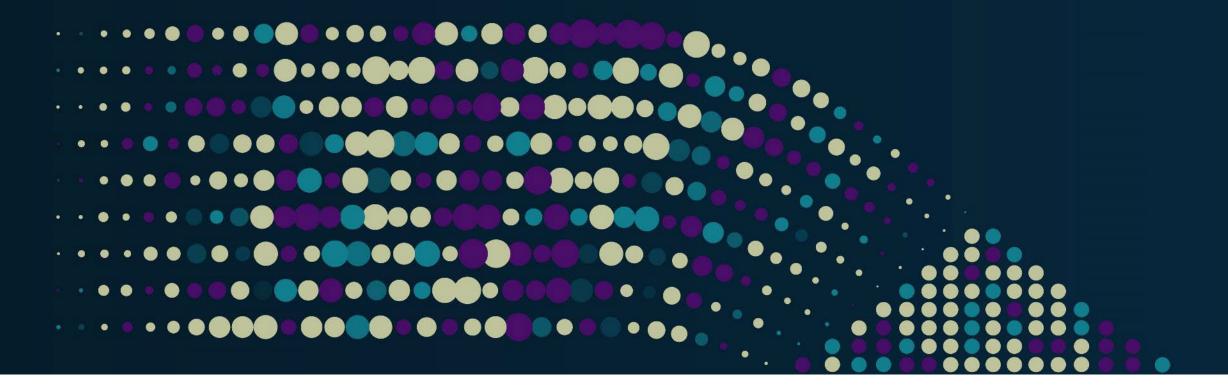
Experiments per day per engineer:

- Without Magnition: **2**
- With Magnition: 50,000+

Parameter variations tested **before prod release**:

- Without Magnition: 50
- With Magnition: **1,000,000+**

Workload performance improvement using our products to find **optimal out-of-the-box settings**: **10-50%+**


Today I Learned

1.Complex systems can be modularized rapidly into simulated components

2.Real-world problems can be analyzed efficiently using simulations

3.Modern simulators allow faster and more thorough cost and performance analysis than direct experimentation

Please take a moment to rate this session.

Your feedback is important to us.

Section Title

Section Subtitle

44 | ©2021 Storage Developer Conference ©. Insert Company Name Here. All Rights Reserved.

• ۲ ۲ • • • • • • • • • • ۲ • 🕘 • . ۲ •

Section Title

Section Subtitle

45 | ©2023 SNIA. All Rights Reserved.

Light Slide Title

Bullets 1

- Bullets 2
 - Bullets 3
 - Bullets 4
 - Bullets 5

Dark Slide Title

Bullets 1

- Bullets 2
 - Bullets 3
 - Bullets 4
 - Bullets 5

