STORAGE DEVELOPER CONFERENCE

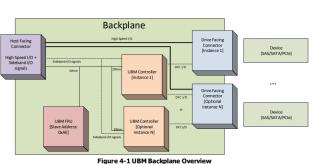
BY Developers FOR Developers

SFF TA TWG Changes Coming to a Server Near You

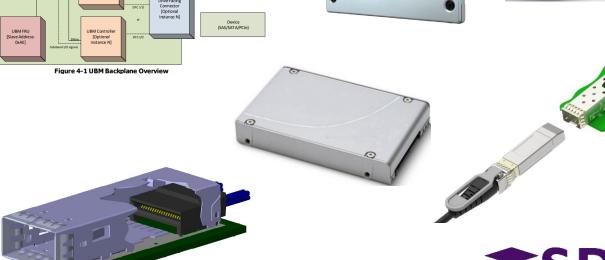
Presented by

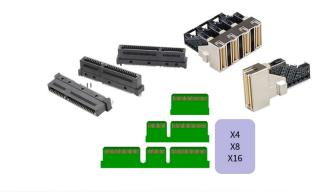
Anthony Constantine, Principal Engineer, Intel Paul Coddington, Mechanical Engineer, Amphenol

۲ 0 ۲ • • • ۲ ۲ •

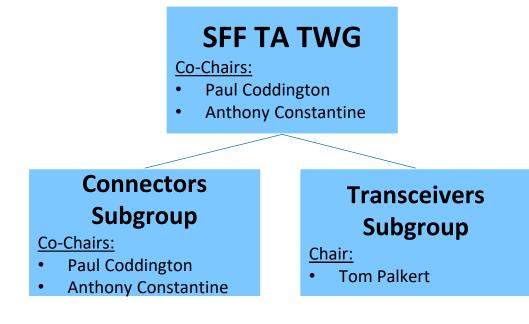

About SFF TA TWG

2 | ©2023 SNIA. All Rights Reserved.


First Off: What is the SFF TA TWG?


- SFF TA TWG develops technical specifications for:
 - Storage media
 - Storage networks
 - Pluggable solutions
- These specifications cover:
 - Cables
 - Connectors and cages
 - Form factors
 - Management interfaces
 - Copper and Optical Transceiver modules
 - Electrical interfaces

Who Are We?


Our members include participants involved in ASICs/CPUs, Data centers, interconnects, networking, research, server systems, storage devices, test equipment, and transceivers.

..........

Our Stats

- 76 member companies
- Managing 149 published specifications
- Revising 14 published specifications
- Developing 9 new specifications
- Our specifications are used by SNIA/SFF members as well as organizations including: ECIA, ANSI, IEC, PCI-SIG, INCITS (SCSI, Fibre Channel, ATA), SATA-IO, JEDEC, OIF, OCP, IEEE (Ethernet), and InfiniBand

• • • ۲ • • • • • • • • • • ۲ • 🕘 • • ۲ •

Our Latest Publications

6 | ©2023 SNIA. All Rights Reserved.

What Have We Done Lately?

In the last year, we published 4 new specifications

- SFF-TA-1033: Internal High-Speed Cable / Modular Connector System
- SFF-TA-1031: SFP2 Cage, Connector, & Module Specification
- SFF-TA-1027: QSFP2 Connector, Cage, & Module Specification
- SFF-8612: MiniLink 4/8X Shielded Connector

We also published revisions of 7 specifications

- SFF-TA-1016: Internal Unshielded High Speed Connector System
- SFF-TA-1009: Enterprise and Datacenter Standard Form Factor Pin and Signal Specification (EDSFF)
- SFF-TA-1002: Protocol Agnostic Multi-Lane High Speed Connector
- SFF-8636: Management Interface for 4-lane Modules and Cables
- SFF-8614: Mini Multilane 4/8X Shielded Cage/Connector (HDsh)
- SFF-8402: SFP+ 1X Pluggable Transceiver Solutions
- SFF-8024: SFF Module Management Reference Code Tables

SFF-TA-1033: Internal High-Speed Cable / Modular Connector System

- This specification defines requirements for an Internal High-Speed Cable / Modular Connector System
 - Designed to provide an internal cable and connector solution that supports both highspeed and power transmission
 - Enables broad compatibility across future generations of host process modules.
- Compatible with SFF-TA-1016.
- <u>Typical Applications</u>: Interconnect for inbox differential cables (PCIe, SAS)

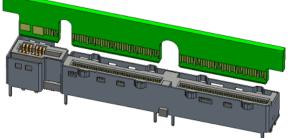


Figure 4-15 RRA 21A Power Cable Application

Figure 4-1 Combo x16+21A Power AIC Application

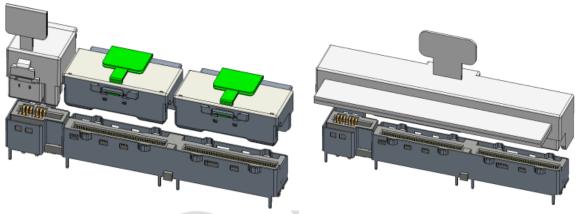
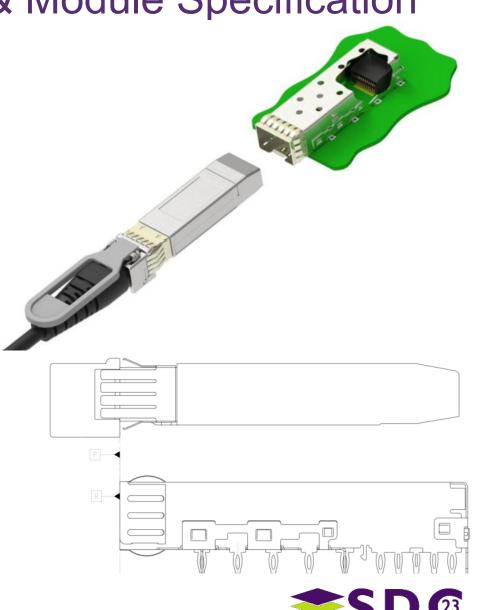


Figure 4-5 Separate RA 74 Pin Cables and a Figure 4-3 Combo x16+21A Power RRA Cable RA 21A Power Cable Application Application



SFF-TA-1031: SFP2 Cage, Connector, & Module Specification

- This specification defines the SFP2 module, cage and connector system
 - SFP2 is an updated version of SFP to support 112Gb/s and beyond over a single lane

Backwards compatible to SFP+/SFP28

- SFP2 cage and connectors are compatible with SFP+/SFP28 modules
- Modules, connectors and cages for 50 Gb/s PAM4 marketed as "SFP56" can follow either this spec or SFF-8402
- <u>Typical Applications</u>: Interconnect between network and storage switches, patch panels, and servers to fiber or Ethernet cables

SFF-TA-1027: QSFP2 Connector, Cage, & Module Specification

- This specification defines the mechanical requirements of the pluggable QSFP2 cages, connectors, and modules
 - QSFP2 is an updated version of QSFP to support 112Gb/s and beyond over 4 lanes
 - Defines 1x1 & 2x1 connector and cage styles
 - Defines Type 1, 2, 2A, and 2B Modules

Backwards compatible with:

- QSFP28 and QSFP+ modules
- QSFP, QSFP+, QSFP28, and QSFP56 hosts (with better thermals)
- <u>Typical Applications</u>: Interconnect between patch panels, switches, and servers to fiber or Ethernet cables



Figure 7-1 QSFP2 Module Types

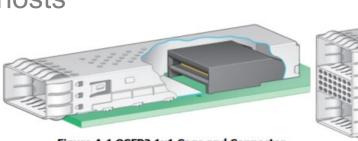
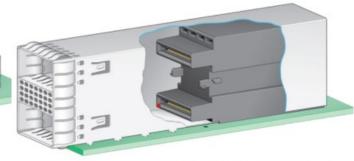
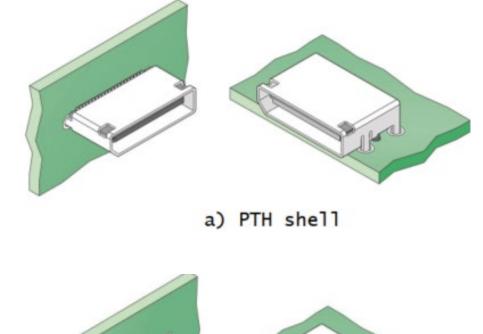
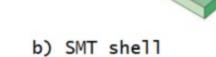


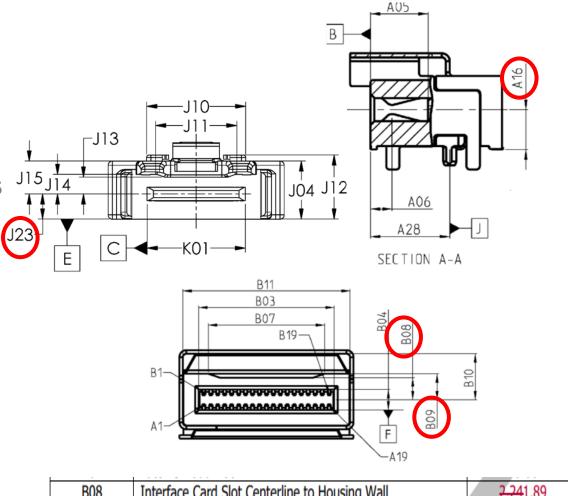
Figure 4-1 QSFP2 1x1 Cage and Connector


Figure 4-2 QSFP2 2x1 Stacked Cage and Connector

SFF-8612: MiniLink 4/8X Shielded Connector

- Defines the mechanical requirements for MiniLink fixed receptacles
 - Designed for use in high-speed serial, interconnect applications at multi-gigabit speeds
- Mating plug is defined in SFF-8611
- <u>Typical Applications</u>: Interconnect for in-box differential cables (PCIe, SAS)



SFF-TA-1016: Internal Unshielded High Speed Connector System

- Defines the connector system for several straight and right angle plugs and receptacles
 - Options for 38, 74, 124, and 148 pin contacts
 - Application includes interconnect for in-box differential cables (PCIe, SAS)

Changes made since prior publication:

- Tightened tolerances of PCB to Card slot CL
- Added dimensions of plug bottom to card CL
- Errata fix of 2 dimensional values that were swapped

R08	Interface Card Slot Centerline to Housing Wall	2.24<u>1.89</u>
B09	Interface Card Slot Centerline to Housing Wall	1.89 2.24

SFF-TA-1009: Enterprise and Datacenter Standard Form Factor Pin and Signal Specification (EDSFF)

- This specification provides the pinout, features, and electricals for EDSFF
 - Applications include SSDs, CXL devices, Accelerators, NICs

Changes made since prior publication

- Optional I3C supported added
- Optional NIC sideband support added
- Clarification on LED behavior

Pin	Contact Sequence	Signal	Signal	Contact Sequence	Pin
<u>BO1</u>	2 nd mate	NIC PWR GOOD	PERST2#	2 nd mate	<u>AO1</u>
<u>BO2</u>	2 nd mate	MAIN PWR EN	PERST3#	2 nd mate	<u>AO2</u>
<u>BO3</u>	2 nd mate	<u>LD#</u>	WAKE#	<u>2nd mate</u>	<u>AO3</u>
<u>BO4</u>	<u>2nd mate</u>	DATA IN	RBT ARB IN	2 nd mate	<u>A04</u>
<u>BO5</u>	2 nd mate	DATA OUT	RBT ARB OUT	2 nd mate	<u>AO5</u>
<u>BO6</u>	2 nd mate	<u>CLK</u>	SLOT ID1	2 nd mate	<u>AO6</u>
<u>B07</u>	2 nd mate	<u>SLOT ID0</u>	<u>RBT_TX_EN</u>	2 nd mate	<u>A07</u>
<u>BO8</u>	2 nd mate	RBT_RXD1	RBT_TXD1	2 nd mate	<u>AO8</u>
<u>BO9</u>	<u>2nd mate</u>	<u>RBT_RXD0</u>	<u>RBT_TXD0</u>	<u>2nd mate</u>	<u>AO9</u>
<u>BO10</u>	<u>1st mate</u>	<u>GND</u>	GND	<u>1st mate</u>	<u>AO10</u>
<u>BO11</u>	2 nd mate	REFCLKn2	REFCLKn3	2 nd mate	<u>AO11</u>
<u>BO12</u>	2 nd mate	<u>REFCLKp2</u>	REFCLKp3	2 nd mate	<u>AO12</u>
<u>BO13</u>	<u>1st mate</u>	<u>GND/NIC_DETECT#</u>	GND	<u>1st mate</u>	<u>AO13</u>
<u>BO14</u>	<u>2nd mate</u>	<u>RBT_CRS_DV</u>	RBT_CLK_IN	2 nd mate	<u>AO14</u>
		Key	Key		
B1	2 nd mate	12 V	GND	1 st mate	A1
B2	2 nd mate	12 V	GND	1 st mate	A2
B3	2 nd mate	12 V	GND	1 st mate	A3
B4	2 nd mate	12 V	GND	1 ^{₅t} mate	A4
B5	2 nd mate	12 V	GND	1 st mate	A5
B6	2 nd mate	12 V	GND	1 st mate	A6
B7	2 nd mate	MFG/BIF0#	SMBCLK/ <u>I3CCLK</u>	2 nd mate	A7
B8	2 nd mate	RFU/BIF1#	SMBDATA/I3CDATA	2 nd mate	A8

SFF-TA-1002: Protocol Agnostic Multi-Lane High Speed

- This specification defines an unshielded, I/O, card edge connector and mating card interface capable of operation up to 112GT/s PAM4
 - 56, 84, 140, or 168 pin contacts
 - Applications include EDSFF, OCP NIC 3.0, OCP DC-CSM, and other board to board interconnects

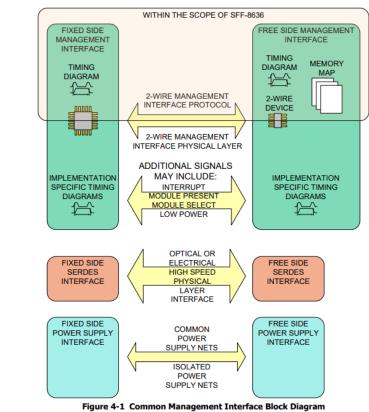
Changes made since prior publication

- Added 32GT/s NRZ signal integrity requirements for the orthogonal connector
- Updated a pin tolerance and added a note for soldermask keep out
- Added 1 additional Straddle mount Host board thickness

Notes: PCB Solder Mask should not be less than 2.87 mm from Datum G

STRADDLE MOUNT HOST BOARD THICKNESS AND OFFSET VARIANTS (MM)

DIM T	DIM U
(HOST BOARD THICKNESS)	(OFFSET)
1.57±0.15 (.062")	0.00 (.0000")
1.93±0.19 (.076")	0.30 (.0118")
2.36±0.23 (.093")	0.00 (.0000")
3.05±0.30 (.120")	0.00 (.0000")



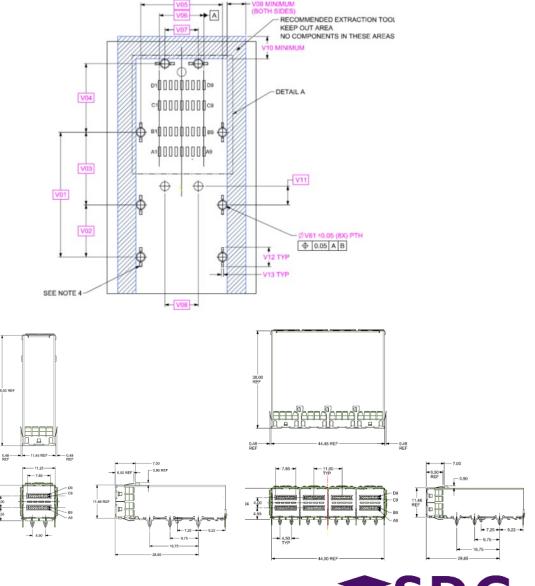
SFF-8636: Management Interface for 4-lane Modules and Cables

- This specification defines a common management interface for 4-lane pluggable transceiver modules and cable assemblies.
 - Provides commonality for modules or cable assemblies with different mechanical, physical layer, and other characteristics
 - Applications include QSFP, QSFP+, minimultilane SAS connectors,

Changes made since prior publication

- Added transceiver subtype and Fiber Face type identifiers to Sub device properties (Byte 117)
- Editorial changes and updated with new naming conventions

An additional sub-type identifier in Byte 117 bits 7-4 can be used to provide information to the host on mechanical and thermal implementation. Refer to SFF-8024 Transceiver Management for possible values and the hardware specification for more information on the listed sub-types. When applicable, the Fiber Face Type, byte 117, bits 1-0 are used to identify the fiber face type for the specific connector type. The values are listed in SFF-8024 Transceiver Management.


<u>117</u>	<u>7-4</u>	Transceiver Sub- type	Transceiver Sub-type code (See SFF-8024 Transceiver Management)	<u>R</u>	<u>R</u>	<u>R</u>	<u>R</u>
	<u>3-2</u>	Reserved		R	<u>R</u>	<u>R</u>	<u>R</u>
	<u>1-0</u>	Fiber Face Type	Fiber Face Type code (See SFF-8024 Transceiver Management)	<u>R</u>	<u>R</u>	<u>R</u>	<u>R</u>

SFF-8614: Mini Multilane 4/8X Shielded Cage/Connector (HDsh)

- This specification defines the Mini Multilane connector for high-speed serial applications. This connector is also referred to as Mini-SAS HD
 - 1x1, 1x2, and 1x4 configurations
 - Applications include PCIe and SAS cabling

Changes made since prior publication

- Added SMT footprint option
- Clarified tolerances

SFF-8402: SFP+ 1X Pluggable Transceiver Solutions

- This specification provides references to the required SFF specifications necessary to implement SFP transceiver 3 modules that operate at various speeds
 - Includes SFP+ (4 Gb/s), SFP10, SFP16, SFP28, SFP56, and SFP112
 - Applications include Interconnect between network and storage switches to fiber or Ethernet cables

Changes made since prior publication

- Clarification of SFF-8472 and general electricals
- Editorial changes

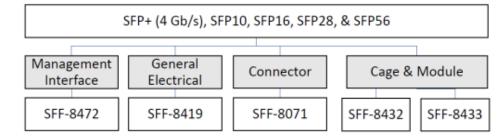


Figure 4-1 SFP+ (4 Gb/s), SFP10, SFP16, SFP28, and SFP56 Pluggable Transceiver Solutions

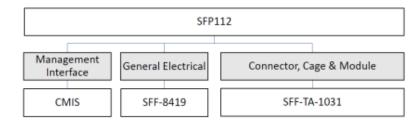


Figure 4-2 SFP112 Pluggable Transceiver Solution

SFF-8472 <u>defines a common memory map</u>, the Management Interface for 1-lane_pluggable transceiver modules (SFP, SFP+/SFP10, SFP16, SFP28, SFP56) <u>and 1-channel managed external cables</u> Specification is intended for use by the modules at 56 Gbps and below. It is backwards compatible to 1 Gbps INF-8074 modules.

Application reference model of SFP+, see Figure 5-1, The application reference model for an SFP+ optical module in Figure 5-1 -shows the high-speed data interface between an ASIC and SFP+ modules. Not all optical modules or cables contain a Retimer or DSP.

SFF-8024: SFF Module Management Reference Code Tables

- This specification provides reference tables for pluggable modules
 - These tables are updated with additional codes reflecting industry developments
 - Reference source for identifiers assigned to interpret the memory maps of self-identifying modules
 - Applications include SFP and QSFP transceivers used in Interconnect between patch panels, switches, and servers to fiber or Ethernet cables

Changes made since prior publication

- Additional codes added for media interface
- Clarifications added in several areas

	Table 4-5 Host Electrical Interface IDs						
ID	ID (Hex)	Host Electrical Interface (Specification Reference)	Application Bit Rate, Gb/s ²	Lane Count	Lane Signaling Rate, GBd ²	Modula- tion	b/ UI
		OTN (<u>ITU-T)</u>					
<u>83</u>	<u>53</u>	<u>OTL4.2</u>	<u>112</u>	2	27.9525	PAM4	2

Table 4-6 MMF media interface IDs

ID	ID (Hex)	MM Media Interface (Specification Reference)	Application Bit Rate, Gb/s	Lane Count	Lane Signaling Rate, <u>GBd</u>	Modula- tion	b/UI
<u>32</u>	<u>20</u>	800GBASE-VR8 (Placeholder)	<u>850.00</u>	<u>8</u>	<u>53.125</u>	PAM4	2

Table 4-7 SMF media interface IDs

ID	ID (Hex)	SM Media Interface (Specification Reference)	Application Bit Rate, Gb/s	Lane Count	Lane Signaling Rate, <u>GBd</u>	Modula- tion	b/UI
<u>85</u>	<u>55</u>	400GBASE-DR4-2 (placeholder)	<u>425.00</u>	<u>4</u>	<u>53.125</u>	PAM4	2
<u>86</u>	<u>56</u>	800GBASE-DR8 (placeholder)	<u>850.00</u>	<u>8</u>	<u>53.125</u>	PAM4	2
<u>87</u>	<u>57</u>	800GBASE-DR8-2 (placeholder)	<u>850.00</u>	<u>8</u>	<u>53.125</u>	PAM4	2
		OTN (ITU-T)					
<u>81</u>	<u>51</u>	FOIC1.4-DO (G.709.3/Y.1331.3)3	126.28	1	31.5697	DP-QPSK	<u>4</u>
<u>82</u>	<u>52</u>	FOIC2.8-DO (G.709.3/Y.1331.3)3	252.56	1	<u>31.5697</u>	DP-16QAM	<u>8</u>
<u>83</u>	<u>53</u>	FOIC4.8-DO (G.709.3/Y.1331.3)3	<u>505.12</u>	1	<u>63.1395</u>	DP-16QAM	<u>8</u>
<u>84</u>	<u>54</u>	FOIC2.4-DO (G.709.3/Y.1331.3)3	252.56	1	63.1395	DP-QPSK	4

Website Search Changes

• To make searching for our specifications easier, we updated our search

- Made project status clearer
- Filtering now pulls documents with multiple project states

For more info, go to <u>https://www.snia.org/sff/specifications</u>

tems per page	Filte	er By	Keyword/ID Search	Start Date End Date
20	~ - <i>F</i>	Any -	~	E.g., 2023-09-07 E.g., 2023-09-07 RESET
Date 👻	ID	Title		Status
2023-09-07	SFF-TA-1033	Internal High-Sp	eed Cable / Modular Connector Syster	em Published 1.0
2023-09-05	SFF-TA-1027	QSFP2 Connect	or, Cage, & Module Specification	Published 1.0 Draft 1.0.1 New Project Initiated
2023-09-01	SFF-TA-1020	Cables and Con	nector Variants Based on SFF-TA-1002	D2 Published 1.0 Draft 1.0.2
2023-08-30	SFF-TA-1002	Protocol Agnos	tic Multi-Lane High Speed Connector	Published 1.4 Draft 1.4.3
2023-08-23	SFF-TA-1035	Next Gen High S	Speed Cable Connector System	Draft 0.0.2
2023-08-18	SFF-TA-1026	Storage System	High Speed Cable Interconnect	Published 1.0 New Project Initiated
2023-08-11	SFF-8690	Tunable SFP+ N	lemory Map for ITU Frequencies	Published 1.4 Draft 1.4.1
2023-08-08	SFF-8612	MiniLink 4/8X S	hielded Connector	Published 1.0
2023-08-08	SFF-TA-1030	Next Gen QSFP	Mechanical	Expired
2023-08-08	SFF-8621	MiniLink 4/8X 2	4 Gb/s Interconnect Solution	Expired
2023-08-03	SFF-8472	Management In	terface for SFP+	Published 12.4 Draft 12.4.2 New Project Initiated
2023-07-14	SFF-TA-1037	Connectors For	Pluggable Multi-Purpose Module	New Project Initiated

• ۲ ۲ • • • • • • • ۲ •

Looking Ahead

20 | ©2023 SNIA. All Rights Reserved.

What New Projects Are We Working On?

- SFF-TA-1024: Test Procedure for SFF-TA-1016 Mated Cable Assembly
- SFF-TA-1025: QSFP56 Electrical
- SFF-TA-1028: QSFP112 Electrical
- SFF-TA-1029: Cabled QSFP Cage & Connector
- SFF-TA-1032: Multi-lane External High Speed Cable System
- SFF-TA-1034: Pluggable Multi-Purpose Module
- SFF-TA-1035: Next Gen High Speed Cable Connector System
- SFF-TA-1036: Cable Optimized Boot Peripheral Connector
- SFF-TA-1037: Connectors For Pluggable Multi-Purpose Module

What specifications are Being Revised?

SFF-8024: SFF Module Management Reference Code Tables

Additional codes, IDs, other progress

SFF-8419: SFP+ Power and Low Speed Interface

Editorial, I2C FM, other definitional additions

SFF-8472: Management Interface for SFP+

Adding registers for latency and management

SFF-8613: Mini Multilane 4/8X Unshielded Connector (HDun)

- Errata fixes, clarifications, editorial
- SFF-8665: QSFP+ 28 Gb/s 4X Pluggable Transceiver Solution (QSFP28)
 - Reference additions
- SFF-8679: QSFP+ 4X Hardware and Electrical Specification
 - Additional test methods

What specifications are Being Revised (Cont'd)?

SFF-8690: Tunable SFP+ Memory Map for ITU Frequencies

Register additions, self tuning bits, references, clarifications.

SFF-TA-1002: Protocol Agnostic Multi-Lane High Speed Connector

PCIe 6.0 support, additional straddle thickness ,errata

SFF-TA-1008: Enterprise and Datacenter Standard Form Factor (E3)

Addition of NIC sidebands, 2x1C, clarifications

SFF-TA-1009: Enterprise and Datacenter Standard Form Factor Pin and Signal Specification (EDSFF)

PCIe 6.0 support, CXL LED, clarifications

SFF-TA-1020: Cables and Connector Variants Based on SFF-TA-1002

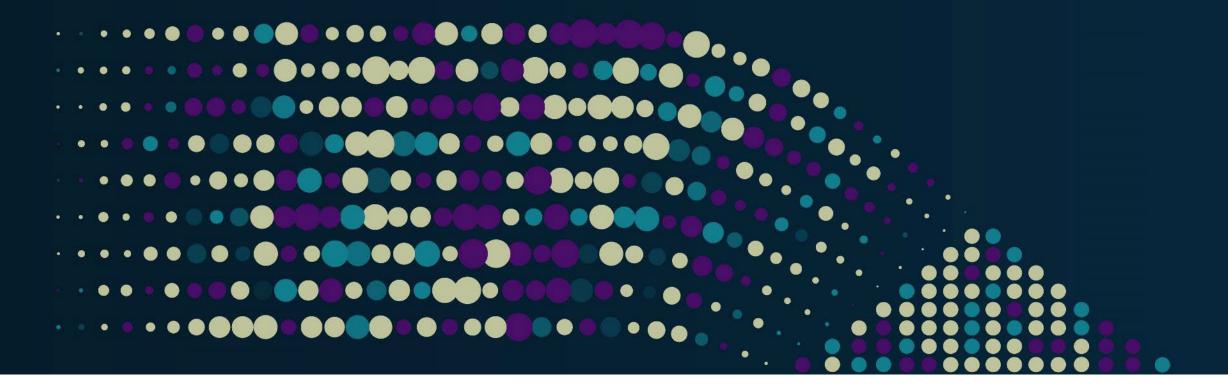
- Additional sizes, additional thickness, errata
- SFF-TA-1026: Storage System High Speed Cable Interconnect
 - Dual bay addition, errata, clarifications
- SFF-TA-1027: QSFP2 Connector, Cage, & Module Specification
 - Additional footprint, alternate latching, 224G support

Opinionated Plug

- Do you want to learn more details about the 10 new projects?
- Do you want to ask more details about the 14 specs being revised?
- Do you want to ask us to speculate on future projects?
- Do you want to tell us what we need to fix?
- Come to our BoF tonight and talk to our opinionated experts!
 - (there will be snacks and drinks)!

.

Want to Get Involved?


Benefits:

- Participation into development of SFF specifications, information documents, and reference guides
- Ability to open new projects
- Access to all presentations, all drafts, prior publications, and supplemental material relevant to all SFF projects
- One of the lowest membership fees around (\$1,500/year moving to **\$1,200**/year in December)

Resources:

- How to Join: <u>https://www.snia.org/sff/join</u>
- Public Site: <u>https://www.snia.org/sff</u>
- Specifications: <u>https://www.snia.org/sff/specifications</u>
- Questions about membership? Please send mail to <u>membership@snia.org</u>
- Additional questions? Please send mail to <u>sff_ta_twgchair@snia.org</u>

Please take a moment to rate this session.

Your feedback is important to us.

