
MULTI QUEUE LINUX BLOCK DEVICE
DRIVERS IN RUST

Storage Developer Conference 2023

Andreas Hindborg

Samsung GOST

1

AGENDA
Why Memory Safety in the Linux Kernel in General is Important
Memory Safety in Rust
The Rust for Linux Community
blk-mq Rust API
null_blk
nvme

2

WHY CARE ABOUT MEMORY SAFETY
Microsoft: 70% of all security bugs are memory safety issues []
Chrome: 70% of all security bugs are memory safety issues []
20% of bugs fixed in stable Linux Kernel branches for drivers are memory safety issues []
65% of recent Linux kernel vulnerabilities are memory safety issues []
ASOP: Memory safety vulnerabilities disproportionately represent our most severe vulnerabilities []
41% of fixes submitted to C null_blk are fixes for memory safety issues []

1
2

4
3

7
6

3

GOAL: PREVENT MEMORY SAFETY RELATED
BUGS IN LINUX

4

WHY RUST 🦀 INSTEAD OF <LANG>
Rust is Much Like C:

Ahead of time compiled
Focus on maximum programmer control and zero runtime overhead
Works well for bare metal work
Statically typed
Performance on par with C/C++
Easy to link with C programs
Basic control flow structures are the same (no throwing of exceptions)

5

DIFFERENCES BETWEEN RUST AND C
Strong type system
Module system (no include files)
All statements including blocks evaluate to values
All values have move semantics by default
References - One mutable or many immutable

Static lifetime analysis

Generic Types
Macros (Simple expansion and AST Transforms)
RAII is encouraged
Async/Await primitives
Safe subset without UB through static analysis

6

MEMORY SAFETY

7

MEMORY SAFETY IN RUST
Rust has a safe subset

Memory safe
Type safe
Thread safe

In safe Rust

No buffer overflows
No use after free
No dereferencing null or invalid pointers
No double free
No pointer aliasing
No type errors
No data races

8

THIS IS NOT UNSAFE BEHAVIOR IN RUST
Deadlocks
Race conditions
Memory leaks
Failing to call destructors
Integer overflows (checked operations available)
Program aborts
Deletion of the production database (logic errors)

9

RUST IN THE LINUX KERNEL

10

CALLING C IS UNSAFE 😬
We don’t want to rewrite Linux in Rust ➡️ we have to talk to C
At FFI boundary we have to verify safety invariants by hand
This is not as bad as it sounds
The things we verify at FFI boundary are things C programmers should verify always
We opt out of the safe subset with the unsafe keyword

11

UNSAFE RUST
In unsafe Rust we can:

Dereference a raw pointer
Call an unsafe function or method (including C functions)
Access or modify a mutable static variable
Implement an unsafe trait
Access fields of unions

12

STRATEGY FOR DEPLOYING RUST
Support driver implementations in safe Rust
Constrain unsafe code to subsystem wrappers
Keep unsafe blocks small and well documented
Focus review bandwidth on unsafe blocks

13

COMMUNITY

14

THE RUST FOR LINUX COMMUNITY
Part of Linux Kernel since 6.1
Zulip - https://rust-for-linux.zulipchat.com/

~500 members
List - rust-for-linux@vger.kernel.org

Send your rust-core patches here
But use relevant subsystem list for non-core patches

WWW - https://rust-for-linux.com
Contributor guide: https://rust-for-linux.com/contributing

Github - https://github.com/rust-for-Linux/linux
Used prior to merge - now primarily a backlog

15

THE ROAD SO FAR (HIGHLIGHTS)
6.1

Kbuild support for rustc, bindgen
alloc
printk
Rust module

6.2
#[vtable]
Errors
Fallible constructors for containers
BStr, CStr
Either, Opaque

6.3
Arc
ScopeGuard
ForignOwnable

6.4
Pinned initialization (pin-init)
sync module with Lock, CondVar, Mutex, etc.
uapi crate

6.5
rustc 1.68.2

6.6
rustc 1.71.1
bindgen 0.65.1

6.x (Pending)
Workqueue

16

ONGOING PROJECTS
(Android) Binder
DRM API + Apple M1/M2 GPU Driver
ENC28J60 SPI Ethernet
V4L2
In kernel TLS handshake
netdev
VirtIO
PuzzleFS (Container FS)
Kernel Sockets
Device Mapper
RCU
VMBus
blk-mq

nvme
null_blk

17

MULTI QUEUE BLOCK DEVICE DRIVERS

18

blk-mq

 []5

19

BLK-MQ INTERFACE
#[macros::vtable]
pub trait Operations: Sized {
 type RequestData;
 type QueueData: ForeignOwnable;
 type HwData: ForeignOwnable;
 type TagSetData: ForeignOwnable;

 fn new_request_data(
 _tagset_data: <Self::TagSetData as ForeignOwnable>::Borrowed<'_>,
) -> Result<Self::RequestData>;

 fn init_request_data(
 _tagset_data: <Self::TagSetData as ForeignOwnable>::Borrowed<'_>,
 _data: Pin<&mut Self::RequestData>,
) -> Result {
 Ok(())
 }

 fn queue_rq(
 hw_data: <Self::HwData as ForeignOwnable>::Borrowed<'_>,
 queue_data: <Self::QueueData as ForeignOwnable>::Borrowed<'_>,
 rq: &Request<Self>,
 is_last: bool,
) -> Result;

 fn commit_rqs(
 hw_data: <Self::HwData as ForeignOwnable>::Borrowed<'_>,
 queue_data: <Self::QueueData as ForeignOwnable>::Borrowed<'_>,
);

 fn complete(_rq: &Request<Self>);

 fn init_hctx(
 tagset_data: <Self::TagSetData as ForeignOwnable>::Borrowed<'_>,
 hctx_idx: u32,
) -> Result<Self::HwData>;

 fn poll(hw_data: <Self::HwData as ForeignOwnable>::Borrowed<'_>) -> i32 {
 unreachable!()
 }

 fn map_queues(tag_set: &TagSetRef) -> Result {
 unreachable!()
 }
}

struct blk_mq_ops {

 blk_status_t (*queue_rq)(struct blk_mq_hw_ctx *,
 const struct blk_mq_queue_data *);

 void (*commit_rqs)(struct blk_mq_hw_ctx *);

 int (*poll)(struct blk_mq_hw_ctx *, struct io_comp_batch *);

 void (*complete)(struct request *);

 int (*init_hctx)(struct blk_mq_hw_ctx *, void *, unsigned int);

 void (*exit_hctx)(struct blk_mq_hw_ctx *, unsigned int);

 int (*init_request)(struct blk_mq_tag_set *set, struct request *,
 unsigned int, unsigned int);

 void (*exit_request)(struct blk_mq_tag_set *set, struct request *,
 unsigned int);

 int (*map_queues)(struct blk_mq_tag_set *set);

};

20

queue_rq()
Rust

C

#[kernel::macros::vtable]
pub trait Operations: Sized {
 // ...
 type QueueData: ForeignOwnable;
 type HwData: ForeignOwnable;
 // ...
 fn queue_rq(
 hw_data: <Self::HwData as ForeignOwnable>::Borrowed<'_>,
 queue_data: <Self::QueueData as ForeignOwnable>::Borrowed<'_>,
 rq: &Request<Self>,
 is_last: bool,
) -> Result;
 // ...
}

blk_status_t (*queue_rq)(struct blk_mq_hw_ctx *, const struct blk_mq_queue_data *);

21

IMPLEMENTING queue_rq()
#[kernel::macros::vtable]
impl mq::Operations for IoQueueOperations {
 // ...
 type QueueData = Box<NvmeNamespace>;
 type HwData = Arc<NvmeQueue<Self>>;
 // ...
 fn queue_rq(
 io_queue: ArcBorrow<'_, NvmeQueue<Self>>,
 ns: &NvmeNamespace,
 rq: &mq::Request<Self>,
 is_last: bool,
) -> Result {
 // ...
 }
 // ...
}

22

CALLING queue_rq()
 unsafe extern "C" fn queue_rq_callback(
 hctx: *mut bindings::blk_mq_hw_ctx,
 bd: *const bindings::blk_mq_queue_data,
) -> bindings::blk_status_t {
 // SAFETY: `bd` is valid as required by this function.
 let rq = unsafe { (*bd).rq };

 // SAFETY: ...
 let hw_data = unsafe { T::HwData::borrow((*hctx).driver_data) };

 // SAFETY: `hctx` is valid as required by this function.
 let queue_data = unsafe { (*(*hctx).queue).queuedata };

 // SAFETY: ...
 let queue_data = unsafe { T::QueueData::borrow(queue_data) };

 // SAFETY: `bd` is valid as required by the safety requirement for this function.
 let ret = T::queue_rq(hw_data, queue_data, &Request::from_ptr(rq), unsafe {
 (*bd).last
 });
 if let Err(e) = ret {
 e.to_blk_status()
 } else {
 bindings::BLK_STS_OK as _
 }
 }

23

SAFETY COMMENTS
 // # Safety
 //
 // The caller of this function must ensure that `hctx` and `bd` are valid
 // and initialized. The pointees must outlive this function. Further
 // `hctx->driver_data` must be a pointer created by a call to
 // `Self::init_hctx_callback()` and the pointee must outlive this function.
 // This function must not be called with a `hctx` for which
 // `Self::exit_hctx_callback()` has been called.
 unsafe extern "C" fn queue_rq_callback(...) {

 // ...

 // SAFETY: The safety requirement for this function ensure that
 // `(*hctx).driver_data` was returned by a call to
 // `Self::init_hctx_callback()`. That function uses
 // `PointerWrapper::into_pointer()` to create `driver_data`. Further,
 // the returned value does not outlive this function and
 // `from_pointer()` is not called until `Self::exit_hctx_callback()` is
 // called. By the safety requirement of this function and contract with
 // the `blk-mq` API, `queue_rq_callback()` will not be called after that
 // point.
 let hw_data = unsafe { T::HwData::borrow((*hctx).driver_data) };

 // ...
 }

24

WHERE IS THE CODE?

NVMe Driver Null Block Driver

25

PERFORMANCE

26

THROUGHPUT VS QUEUE DEPTH

INTEL MEMPEK1W016GA, 12th Gen Intel(R) Core(TM) i5-12600, PCIe 3.0 x2, Linux 6.5-rc5+rust_next+rnvme

27

POLLED - HORIZONTAL SCALING

AMD EPYC 7313 3x INTEL P5800x 16GT/s x4 7.88 GB/s (PCIe 4), DATA FROM RUST/C NVME ON LINUX 6.1

28

POLLED - VERTICAL SCALING

AMD EPYC 7313 3x INTEL P5800x 16GT/s x4 7.88 GB/s (PCIe 4), DATA FROM RUST/C NVME ON LINUX 6.1

29

RUST null_blk
Simple demonstrator for Rust block APIs
Allow block community to ease into Rust
Remove potential memory safety issues in the process:

C null_blk is 256 commits (as of 6.1)
27% (68) are bug fixes
41% (28) of fixes are fixes for memory safety issues

Demonstrator as submitted:
Limited features set - for now
Driver: 147 LoC (100% safe Rust)
Block API: 585 LoC + 252 LoC pages/radix_tree
Average performance over 5 synthetic benchmarks ▶️ Better for small BS, worse for large BS

30

RANDOM WRITE

Intel Alder Lake workstation (i5-12600). 60s fio runs on bare metal, pinned workers, io_uring, bs 4k to 1M -> QD 128, bs >= 2M -> QD 64, batch submit/complete -> 16.

31

RANDOM READ

Intel Alder Lake workstation (i5-12600). 60s fio runs on bare metal, pinned workers, io_uring, bs 4k to 1M -> QD 128, bs >= 2M -> QD 64, batch submit/complete -> 16.

32

QUESTIONS?

33

[1]
[2]
[3]
[4]
[5]
[6]
[7]

REFERENCES
.

.
.

A. A. Vasilyev, “Static verification for memory safety of Linux kernel drivers,” Proceedings of ISP RAS, 30:6 (2018), 143–160: .
Linux block IO: introducing multi-queue SSD access on multi-core systems: .
[LSF/MM/BPF TOPIC] blk_mq rust bindings: .
Memory Safe Languages in Android 13: .

https://www.zdnet.com/article/microsoft-70-percent-of-all-security-bugs-are-memory-safety-issues/
https://www.chromium.org/Home/chromium-security/memory-safety/
https://lssna19.sched.com/event/RHaT/writing-linux-kernel-modules-in-safe-rust-geoffrey-thomas-two-sigma-investments-alex-gaynor-alloy

http://dx.doi.org/10.15514/ISPRAS-2018-30(6)-8
https://doi.org/10.1145/2485732.2485740

https://lore.kernel.org/all/87y1ofj5tt.fsf@metaspace.dk/
https://security.googleblog.com/2022/12/memory-safe-languages-in-android-13.html

34

https://www.zdnet.com/article/microsoft-70-percent-of-all-security-bugs-are-memory-safety-issues/
https://www.chromium.org/Home/chromium-security/memory-safety/
https://lssna19.sched.com/event/RHaT/writing-linux-kernel-modules-in-safe-rust-geoffrey-thomas-two-sigma-investments-alex-gaynor-alloy
http://dx.doi.org/10.15514/ISPRAS-2018-30(6)-8
https://doi.org/10.1145/2485732.2485740
https://lore.kernel.org/all/87y1ofj5tt.fsf@metaspace.dk/
https://security.googleblog.com/2022/12/memory-safe-languages-in-android-13.html

