STORAGE DEVELOPER CONFERENCE



BY Developers FOR Developers

### **Benchmarking Storage** with AI Workloads

Presented by

Devasena Inupakutika, Charles Lofton, Bridget Davis Samsung Semiconductor Inc.

### Motivation

- Growing production datasets: 10s, 100s of petabytes
- Samsung's datacenter storage and memory products
- Research involving the impact of storage on AI/ ML pipelines is limited
- How to showcase Samsung datacenter product's impact to real world workloads?









### Introduction

LABORATE. INNOVATE. GROW.

- Benchmarking essential to evaluating storage systems:
  - Storage needs for large machine learning datasets are growing
- Evaluating storage for AI workloads is challenging
  - Real-world AI training requires specialized hardware
  - System resources stressed by AI application
- Do AI workloads benefit from high performance storage systems?
- Is there a realistic method to showcase high performance storage for AI workloads?
- Can the test methods be easily implemented and reproducible?





### Introduction

- Benchmark datasets are smaller whereas data is the moving force of AI algorithms
- Real-world production workloads demands huge data (both for training and generation during streaming)
- Empirical study to understand how AI workloads utilize storage devices through I/O patterns





### AI Workloads I/O Characterization

- Better understanding of AI I/O profiles
- Provides insights on the design and configuration of storage systems
- Main aspects under consideration:
  - I/O Rates
  - Throughput Rates
  - Randomness
  - Locality of reference
  - I/O size distribution
  - % Reads vs Writes





### Blocktrace Analysis of AI Workloads

- Gives deeper insight into I/O profile
- The block report generated by "btt" provides detail about each I/O:
  - Command (read or write), precise timestamp, starting LBA, ending LBA
  - From the above data we can derive details about:
    - Randomness: If starting address of I/O "B" equals ending address of I/O "A", I/O is sequential
    - Read/write ratios
    - I/O size distribution: Ending LBA minus starting LBA equals block size in sectors
    - Locality of reference: Some address ranges are accessed more frequently than others





### Rule of Thumb

### • AI workloads are computation bound

- Loading a 200KB image takes ~200us
- Classify a image takes ~10ms

### Parallelize AI jobs to saturate I/O

- Use a cluster of GPUs
- Keep every GPU busy





### I/O intensive Methodologies

Benchmarking AI workloads in a customer representative scenarios



8 | ©2021 Storage Developer Conference ©. Insert Company Name Here. All Rights Reserved.

### Limiting Memory

- To accurately model realistic workload with very large training dataset requirement
  - Readily available benchmark datasets are small and fit in memory
  - Goal is to stress storage in a small realistic test environment

### Control Dataset size to memory ratio

- e.g. MLPerf ImageNet dataset (150 GB)
- Docker memory limit options

| Dataset Size (GB) | System Memory<br>(GB) | Ratio |
|-------------------|-----------------------|-------|
| 150               | 768                   | 1:5   |
| 150               | 64                    | 2.5:1 |





### Simultaneous Data Ingestion and Training

- Normally, training is not run in isolation
- Multiple models to be trained

I 🕘 🔵 🔘

Realistic scenario: data ingest and training happen together







### Training in parallel

### Training parallelism:

 Storage to meet the needs of concurrent data ingest of different training jobs

### Hyper-parameter tuning:

 Run tens of hundreds of instances of the same training job with different configuration of the model







### Inference: Streaming applications

- Inference is more likely I/O bound
  - Training has 3x computations compared to Inferencing
    - Forward propagation, backward propagation, and weight updates
  - Less CPU bound implies possibility of I/O bound





### I/O Challenges for Streaming applications

- Large amount of concurrent input data volume
  - One 4K 30 fps video stream: 45Mbps (~6MBps)
    - 1000 video streams: 45Gbps (~6GBps)
  - Massive intermediate data from different stages in a pipeline

### Video processing pipeline

- Videos are split into frames
- Stages are isolated into containers
- One stage consume frames from last stage
- Frames are passed through Apache Kafka with replicas





SAMSU

### Test System

| Hardware Components             | Details                                                                                                                            |  |  |  |  |  |  |  |
|---------------------------------|------------------------------------------------------------------------------------------------------------------------------------|--|--|--|--|--|--|--|
| GPU                             | 8x Nvidia Tesla V100S, 32 GB                                                                                                       |  |  |  |  |  |  |  |
| CPU                             | Intel Xeon Platinum 8268, 2.9 GHz, 2 Sockets, 2 threads<br>per core, 96 (24*2*2) total cores, 768 GB System<br>Memory              |  |  |  |  |  |  |  |
| Storage                         | cal: 1 Samsung PM9A3 (3.49 TiB) drive per host: PCI<br>Express Gen4 x 4 interface U.2 (EXT4 file system)<br>Details<br>20.04 focal |  |  |  |  |  |  |  |
| Software Components             | Details                                                                                                                            |  |  |  |  |  |  |  |
| Ubuntu                          | 20.04 focal                                                                                                                        |  |  |  |  |  |  |  |
| Tensorflow (tensorflow-<br>gpu) | MLPerf- Version: 2.4.1                                                                                                             |  |  |  |  |  |  |  |
| Docker                          | Version: 20.10.12                                                                                                                  |  |  |  |  |  |  |  |
| CUDA Toolkit                    | Version: CUDA-11.2                                                                                                                 |  |  |  |  |  |  |  |
| FIO                             | Version: 3.26-59                                                                                                                   |  |  |  |  |  |  |  |
| ResNet50 v1.5 model             | Distributed multi-GPU training with ImageNet<br>ILSVRC2012 dataset                                                                 |  |  |  |  |  |  |  |
| OpenMPI                         | Version: 3.0.0                                                                                                                     |  |  |  |  |  |  |  |
| Horovod                         | Version: 0.24.2                                                                                                                    |  |  |  |  |  |  |  |



# For inference testbed:

- Compute node cluster
  - Kubernetes
- Storage (message broker) cluster
  - Kafka (Helm charts)







### **Dataset and Model details**

| Task                   | Model    | Framework              | Dataset details                   |
|------------------------|----------|------------------------|-----------------------------------|
| Image classification   | ResNet50 | Tensorflow-gpu: 2.4.1  | ImageNet-1k                       |
| training               |          |                        |                                   |
| Video streaming and    | ResNet50 | Tensorflow-gpu: 2.11.0 | 1. Videos:                        |
| recognition: Inference |          |                        | a. Big Buck Bunny, Frame rate:    |
| through Image          |          |                        | 24FPS, Resolution: 1920 x         |
| classification model   |          |                        | 1080, Size: 45 MB, Duration:      |
|                        |          |                        | 09:56 min                         |
|                        |          |                        | b. Costa Rica, Frame rate:        |
|                        |          |                        | 60FPS, Resolution: 3840 x         |
|                        |          |                        | 2160, Size: 1.13 GB, Duration:    |
|                        |          |                        | 05:13 min                         |
|                        |          |                        | 2. ImageNet-1k Validation dataset |





### Impact of Limiting Memory



16 | ©2021 Storage Developer Conference ©. Insert Company Name Here. All Rights Reserved.

### Baseline vs Limited memory: Disk profiles

| Metric        | Baseline | Limited |
|---------------|----------|---------|
|               |          | Memory  |
| Avg. IOPS     | 23       | 2,244   |
| Avg.          | 5.84     | 280.46  |
| Throughput    |          |         |
| (MiB/s)       |          |         |
| Avg. Block    | 169.55   | 170.23  |
| Size (KiB)    |          |         |
| Avg.          | 203.63   | 185.91  |
| Response      |          |         |
| time ( µs)    |          |         |
| Training time | 364      | 357     |
| (minutes)     |          |         |

\* Zero values are discarded from disk metric statistics calculation in the tables. Disk I/O, Throughput, Block sizes, Response time, CPU and GPU utilization % are average values.





- Disk throughput is substantially increased → 48x
- Training time does not change much when limiting memory → with faster/ performant storage



16

### System resources **GPU Utilization %** 90 80 70 60 Utilization % 50 CPU Utilization (%) 40 30









**Baseline and Limiting** ۲ memory exhibit comparable performance



### I/O Profile: Resnet50 Single-Model Training

| I/O        | Read Pct. | Random<br>Pct. | Average<br>IOPS | Minimum<br>Read<br>Request<br>(KiB) | Median<br>Read<br>Request<br>(KiB) | Maximum<br>Read<br>Request<br>(KiB) | Mean Read<br>Request<br>(KiB) | StandardMinimumDeviationWrite(KiB)Request(KiB)(KiB) |   | nimum Median<br>Write Write<br>equest Request<br>(KiB) (KiB) |     | Mean<br>Write<br>Request<br>(KiB) | Standard<br>Deviation<br>(KiB) |
|------------|-----------|----------------|-----------------|-------------------------------------|------------------------------------|-------------------------------------|-------------------------------|-----------------------------------------------------|---|--------------------------------------------------------------|-----|-----------------------------------|--------------------------------|
| Total      | 99.94%    | 83.88%         | 639             | 4                                   | 128                                | 256                                 | 171                           | 60                                                  | 4 | 8                                                            | 108 | 16                                | 16                             |
| Random     | 99.96%    | 100%           | 536             | 4                                   | 128                                | 256                                 | 177                           | 62                                                  | 4 | 8                                                            | 108 | 13                                | 13                             |
| Sequential | 99.85%    | 0%             | 103             | 4                                   | 128                                | 256                                 | 135                           | 30                                                  | 4 | 4                                                            | 44  | 19                                | 18                             |

• Nearly 100% read, 84% random, with I/O sizes ranging from 4K to 256K





### Trace statistics: I/O plots and locality histogram

Random and Sequential reads within a relatively narrow address range



COLLABORATE. INNOVATE. GROW.

20 | ©2023 SNIA. All Rights Reserved.

 

### Trace statistics: I/O Request Sizes

- Random reads ranged from 4K to 256K, but more than 99% were either 128K or 256K (left)
- Random write I/O sizes were more diverse (right). Sequential I/O size distribution was similar.



# Simultaneous Data Ingestion and Training



22 | ©2021 Storage Developer Conference ©. Insert Company Name Here. All Rights Reserved.

### Baseline vs Limited memory: Disk profiles

| Metric        | Baseline   | Limited     |
|---------------|------------|-------------|
|               |            | Memory      |
| Avg. IOPS     | 25054      | 25035       |
| Avg.          | 3162.59    | 3181.91     |
| Throughput    |            |             |
| (MiB/s)       |            |             |
| Avg. Block    | Read:      | Read: 170.4 |
| Size (KiB)    | 169.8      | Write: 128  |
|               | Write: 128 |             |
| Avg.          | 79.418     | 75.48       |
| Response      |            |             |
| time ( ms)    |            |             |
| Training time | 373.15     | 373         |
| (minutes)     |            |             |

 $^{\ast}$  Zero values are discarded from disk metric statistics calculation in the tables. Disk I/O, Throughput, Block sizes, Response time, CPU

and GPU utilization % are average values.





Throughput [MiB/s] SDIT Disk Throughput SDIT Limiting Memory Disk Throughput Time [m]



### System resources





GPU Memory Utilization % 50 40 Utilization % 30 20 10 0 GPU6 GPU0 GPU1 GPU2 GPU3 GPU4 GPU5 GPU7 Baseline Limited Memory

- GPU utilization unaffected:
  - GPU not handling data ingestion operations
- CPU-IOWait increases:
  - Parallel data ingestion





### I/O Characterization

| I/O               | Read<br>Percent | Random<br>Percent | Average<br>IOPS | Minimum<br>Read (KiB) | Median<br>Read (KiB)* | Mean Read<br>(KiB) | Read Std. Minimum<br>Dev. (KiB) Write (KiB) |   | Minimum Median<br>/rite (KiB) Write (KiB) V |     | Mean Write<br>(KiB) | Write Std.<br>Dev. (KiB) |
|-------------------|-----------------|-------------------|-----------------|-----------------------|-----------------------|--------------------|---------------------------------------------|---|---------------------------------------------|-----|---------------------|--------------------------|
| Baseline          | 0.33%           | 95.47%            | 24,714          | 4                     | 256                   | 247                | 46                                          | 4 | 128                                         | 508 | 128                 | 6                        |
| Limited<br>Memory | 1.78%           | 93.86%            | 24,786          | 4                     | 256                   | 245                | 52                                          | 4 | 128                                         | 508 | 128                 | 7                        |

\* Also Maximum Read

Baseline



Limited Memory



- I/O profile is mostly write and mostly random
- Primary difference between baseline and limited memory is in the read profile
- In baseline training run, disk reads occur primarily in the first epoch because the entire data set fits in memory
- In limited memory run, reads from disk occur during all training epochs
   SAMSUNG



Trace statistics: Write I/O plots and locality

Writes are ~95% random, but locality of reference is high



26 | ©2023 SNIA. All Rights Reserved.

### Training in Parallel



27 | ©2021 Storage Developer Conference ©. Insert Company Name Here. All Rights Reserved.



### Parallel models training: Disk profiles

| Containers/                   | 1      | 2       | 4       | 8       |            |
|-------------------------------|--------|---------|---------|---------|------------|
| Parallel Models               |        |         |         |         | 40         |
| GPUs per training<br>workload | 8      | 4       | 2       | 1       | 30<br>[/2] |
| Batch Size                    | 1024   | 1024    | 1024    | 512     | SdOI 20    |
| Disk I/O                      | 1658.3 | 1679.94 | 2805.26 | 1245.34 | 10         |
| Disk Throughput<br>(MiB/s)    | 276.55 | 419.56  | 351.32  | 310.72  |            |
| Block (KiB)                   | 169.55 | 253.71  | 127.31  | 254.2   |            |
| Response time (µs)            | 203.63 | 304.57  | 162.71  | 195.88  |            |
| Training time<br>(minutes)    | 364    | 258.2   | 441     | 682     |            |



 $^{\ast}$  Zero values are discarded from disk metric statistics calculation in the tables. Disk I/O, Throughput, Block sizes, Response time, CPU

and GPU utilization % are average values.



28 | ©2023 SNIA. All Rights Reserved.



**SD 2** 

## System resources





 CPU and GPU utilization increases with number of read-intensive training workloads





### I/O Characterization

|                                              | 1 Model | 2 Models | 4 Models  | els 8 Models |  |  |  |  |
|----------------------------------------------|---------|----------|-----------|--------------|--|--|--|--|
| Total Reads                                  | 794,262 | 509,876  | 1,084,946 | 509,674      |  |  |  |  |
| Mean Read<br>Request                         | 170 KiB | 256 KiB  | 128 KiB   | 256 KiB      |  |  |  |  |
| Median Read<br>Request                       | 128 KiB | 256 KiB  | 128 KiB   | 256 KiB      |  |  |  |  |
| Randomness                                   | 83.9%   | 95.4%    | 74.8%     | 92.6%        |  |  |  |  |
| Locality<br>Bands                            | 1       | 3        | 1         | 3            |  |  |  |  |
| Percent of I/O<br>received by<br>10% address |         |          |           |              |  |  |  |  |
| space                                        | 99%     | 63%      | 98%       | 62%          |  |  |  |  |

- 2-models and 8-models parallel training similarities
- Average request size increased from 256 blocks to 512 blocks (256 KiB)
- 8-models training is 100% read, with randomness increasing from 75% (4-models) to 92%





### Trace statistics: I/O Plots



 Two- and eightmodels show several bands of activity distributed across drive's address range



2 & 8 models

# Highest locality of reference in single model training: 6% address space

receiving > 99% reads

 Two- and eightmodels have reads more distributed across the drive's address range





### Trace statistics: I/O Request Sizes



- Single model: Random read request sizes ranged from 4KiB to 256KiB
  - Mainly either 4KiB or 256KiB
- Four models: Most reads are 128 KiB

4



### Inference: Streaming workload



34 | ©2021 Storage Developer Conference ©. Insert Company Name Here. All Rights Reserved.

### **Data Ingestion Disk Metrics**

| Metric/<br>Concurrent<br>Streams | 300, 24 FPS<br>Videos, 3 RF<br>(6 partitions)<br>- 1 topics | 300, 24 FPS<br>Videos, 3 RF (6<br>partitions) - 3<br>topics | 300, 60 FPS<br>Videos, 3 RF<br>(6 partitions) -<br>1 topic | 300, 60 FPS<br>Videos, 3<br>RF (6<br>partitions) -<br>3 topics |  |
|----------------------------------|-------------------------------------------------------------|-------------------------------------------------------------|------------------------------------------------------------|----------------------------------------------------------------|--|
| Avg. IOPS                        | 4471.79                                                     | 7327.74                                                     | 27637.63                                                   | 13234                                                          |  |
| Avg.                             | 46.77                                                       | 152.69                                                      | 407.75                                                     | 306.63                                                         |  |
| Throughput                       |                                                             |                                                             |                                                            |                                                                |  |
| (MIB/S)                          |                                                             |                                                             |                                                            |                                                                |  |
| Avg. Block                       | Read: 110.87                                                | Read: 44                                                    | Read: 157.7                                                | Read:125                                                       |  |
| Size (KiB)                       | Write: 11.69                                                | Write: 18                                                   | Write: 13.2                                                | Write: 21.18                                                   |  |
| Avg.                             | 838.37                                                      | 1489.38                                                     | 975.29                                                     | 1223.09                                                        |  |
| Response                         |                                                             |                                                             |                                                            |                                                                |  |
| time ( µs)                       |                                                             |                                                             |                                                            |                                                                |  |

 Frame extraction from 300 concurrent streams and publish to topic: ~27K IOPS

 Disk I/O and Throughput increase with great parallelism





### System Resources





- CPU overhead increased with increasing partitions from 3 to 6 but remained constant with further increase to 12 partitions.
- Videos with higher frame rate (FPS) and resolution showed relatively higher CPU utilization.



### Data Ingestion I/O Characterization

| ı/o         | Read<br>Percent | Random<br>Percent | Average<br>IOPS | Minimum<br>Write<br>(KiB) | Median<br>Write<br>(KiB) | Maximum<br>Write<br>(KiB) | Mean<br>Write<br>(KiB) | Std. Dev.<br>(KiB) |  |
|-------------|-----------------|-------------------|-----------------|---------------------------|--------------------------|---------------------------|------------------------|--------------------|--|
| 30 Streams  | 0.08%           | 71.43%            | 281             | 4                         | 4                        | 764                       | 32                     | 96                 |  |
| 100 Streams | 0.54%           | 69.92%            | 422             | 4                         | 8                        | 764                       | 64                     | 140                |  |

Nearly 100% write, ~70% random





37 | ©2023 SNIA. All Rights Reserved.

Standard deviation suggests high diversity of write sizes

 Writes more widely distributed across SSD's address range with increased streams



100 streams



### Trace statistics: Locality of reference and I/O sizes distribution

Write Locality Histogram



- Random write request size distribution was quite varied
- 70% of random writes were
  28K or less, but the remaining
  30% ranged up to 764K





30 streams

 Write locality high both for 30 and 100 streams with 6% address space receiving 87% and 93% writes respectively.



100 streams

SAMSIING

### System Implications and Discussion

- The majority of the workloads studied were primarily random, with relatively high locality of reference
  - Suitable for testing optimizations such as read caching and write coalesce
- Some workloads (e.g. inference streaming) exhibited a very diverse write I/O size distribution
  - Useful "real-world" benchmarking tool for challenging high performance storage systems





### Conclusion

- Simultaneous data ingestion and training, and inference were particularly effective benchmarks
  - These approaches present challenging, "real-world" workloads to storage
- Our testing indicates that high-performance storage allows I/O-intensive and computationally-intensive portions of the AI pipeline to run in parallel with minimal impact on training and inference times.





### **Thank You!**



### **Backup Slides**



### Summary statistics

| Workload Description                                                             | Read Percentage | Random<br>Percentage | Average<br>IOPS | Minimum<br>Read<br>Request<br>(KiB) | Median<br>Read<br>Request<br>(KiB) | Maximum<br>Read<br>Request<br>(KiB) | Mean<br>Read<br>Request<br>(KiB) | Standard<br>Deviation<br>(KiB) | Minimum<br>Write<br>Request<br>(KiB) | Median<br>Write<br>Request<br>(KiB) | Maximum<br>Write<br>Request<br>(KiB) | Mean<br>Write<br>Request<br>(KiB) | Standard<br>Deviation<br>(KiB) | Random<br>Read<br>Operations | Random<br>Write<br>Operations | Sequential<br>Read<br>Operations | Sequential<br>Write<br>Operations | Trace<br>Length<br>Seconds |
|----------------------------------------------------------------------------------|-----------------|----------------------|-----------------|-------------------------------------|------------------------------------|-------------------------------------|----------------------------------|--------------------------------|--------------------------------------|-------------------------------------|--------------------------------------|-----------------------------------|--------------------------------|------------------------------|-------------------------------|----------------------------------|-----------------------------------|----------------------------|
| Resnet50 Training Single Model                                                   | 99.94%          | 83.88%               | 639             | 4                                   | 128                                | 3 256                               | 171                              | 60                             | ) 4                                  | 1 8                                 | 108                                  | 16                                | 16                             | 666,340                      | 265                           | 127,922                          | 194                               | 1,244                      |
| Resnet50 Training Two Models                                                     | 100.00%         | 95.43%               | 600             | 4                                   | 256                                | 5 256                               | 256                              | 5 6                            | 5 4                                  | 1 4                                 | 8                                    | 2                                 | 2                              | 486,584                      | 2                             | 23,292                           | 2                                 | 850                        |
| Resnet50 Training Two Models LM                                                  | 100.00%         | 96.20%               | 2,308           | 4                                   | 256                                | 5 256                               | 172                              | 2 113                          | 3 4                                  | 1 4                                 | 136                                  | 6                                 | 6                              | 46,231,316                   | 1,312                         | 1,824,854                        | 744                               | 20,823                     |
| Resnet50 Training Four Models                                                    | 99.95%          | 74.79%               | 890             | 4                                   | 128                                | 3 128                               | 128                              | 3 2                            | 2 4                                  | 1 4                                 | 128                                  | 11                                | 20                             | 811,309                      | 471                           | 273,637                          | 52                                | 1,220                      |
| Resnet50 Training Eight Models                                                   | 100.00%         | 92.59%               | 257             | 4                                   | 256                                | 5 256                               | 256                              | 5 7                            | 7 C                                  | ) (                                 | 0                                    | 0                                 | C                              | 471,924                      | 0                             | 37,746                           | 0                                 | 1,983                      |
| Inference Baseline, Video Streaming, Ingestion Phase (30 Streams, 3 Partitions)  | 0.08%           | 71.43%               | 281             | 4                                   | 128                                | 3 128                               | 102                              | 2 50                           | ) 4                                  | 1 4                                 | 764                                  | 32                                | 96                             | 773                          | 720,927                       | 40                               | 288,605                           | 3,599                      |
| Inference Baseline, Video Streaming, Ingestion Phase (100 Streams, 3 Partitions) | 0.54%           | 69.92%               | 422             | 4                                   | 128                                | 3 128                               | 118                              | 3 32                           | 2                                    | 1 8                                 | 764                                  | 64                                | 140                            | 8,016                        | 1,054,351                     | 260                              | 456,703                           | 3,599                      |
| Simultaneous Data Ingestion and Training (5 Epochs)                              | 0.33%           | 95.47%               | 24,714          | 4                                   | 256                                | 5 256                               | 247                              | 7 46                           | 5 4                                  | 1 128                               | 508                                  | 128                               | 6                              | 574,458                      | 175,355,092                   | 33,960                           | 8,305,481                         | 7,456                      |
| Simultaneous Data Ingestion and Training (5 Epochs Limited Memory)               | 1.78%           | 93.86%               | 24,786          | 4                                   | 256                                | 5 256                               | 245                              | 5 52                           | 2 4                                  | 1 128                               | 508                                  | 128                               | 7                              | 2,879,201                    | 157,200,319                   | 154,185                          | 10,321,862                        | 6,883                      |
| Training with Checkpointing Every 100 Steps                                      | 93.27%          | 92.61%               | 165             | 4                                   | 256                                | 5 256                               | 255                              | 5 14                           | L 2                                  | 1 16                                | 1,280                                | 431                               | 567                            | 507,355                      | 12,527                        | 16,214                           | 25,255                            | 3,408                      |
| Training with Checkpointing Every 1252 Steps (Default Interval)                  | 99.68%          | 96.78%               | 151             | 4                                   | 256                                | 5 256                               | 256                              | 5 7                            | / 2                                  | 1 16                                | 1,280                                | 134                               | 362                            | 501,256                      | 297                           | 15,348                           | 1,351                             | 3,438                      |
| BERT 2000-Step Default Checkpoint Interval PM983                                 | 0.22%           | 4.38%                | 26              | 4                                   | 128                                | 3 128                               | 126                              | 5 15                           | 5 4                                  | 1 128                               | 128                                  | 128                               | 5                              | 69                           | 2,740                         | 74                               | 61,185                            | 2,513                      |
| BERT 2000-Step Default Checkpoint Interval PM9A3                                 | 0.11%           | 60.38%               | 43              | 4                                   | 128                                | 3 256                               | 168                              | 66                             | 5 4                                  | 1 8                                 | 1,280                                | 36                                | 176                            | 215                          | 164,878                       | 92                               | 108,218                           | 6,395                      |
| BERT 2000-Step Default Checkpoint Interval PM9A3 + Preconditioning +<br>New FS   | 0.23%           | 0.49%                | 2               | 4                                   | 128                                | 3 256                               | 129                              | 9 89                           | ) 2                                  | 1,280                               | 1,280                                | 1,127                             | 326                            | 9                            | 16                            | 3                                | 5,113                             | 2,163                      |
| BERT 2000-Step Default Checkpoint Interval PM9A3 + New FS + Pytorch<br>Framework | 0.00%           | 3.47%                | 181             | 0                                   | C                                  | ) 0                                 | C                                | ) 0                            | ) 4                                  | 1 508                               | 1,280                                | 579                               | 443                            | 0                            | 7,382                         | 0                                | 205,078                           | 1,176                      |
| BERT 2000-Step Limited Memory Default Checkpoint Interval PM983                  | 0.27%           | 3.63%                | 26              | 4                                   | 128                                | 3 128                               | 126                              | 5 5                            | 5 4                                  | 1 128                               | 128                                  | 128                               | 5                              | 107                          | 2.149                         | 60                               | 59.818                            | 2.380                      |
| BERT 2000-Step Limited Memory Default Checkpoint Interval PM9A3                  | 0.12%           | 58.17%               | 45              | 4                                   | 128                                | 3 256                               | 169                              | 63                             | 3 4                                  | 1 8                                 | 1.280                                | 36                                | 174                            | 219                          | 158.072                       | 106                              | 113.707                           | 6.110                      |
| BERT 2000-Step With 250-Step Checkpoint Interval PM983                           | 0.10%           | 3.70%                | 106             | 4                                   | 128                                | 3 128                               | 123                              | 3 25                           | 5 4                                  | 1 128                               | 128                                  | 128                               | 5                              | 133                          | 9.655                         | 119                              | 254.328                           | 2.504                      |
| BERT 2000-Step With 250-Step Checkpoint Interval PM9A3                           | 0.08%           | 57.94%               | 131             | 4                                   | 128                                | 3 256                               | 172                              | 2 64                           | 4                                    | 1 8                                 | 1,280                                | 89                                | 285                            | 196                          | 202,814                       | 99                               | 147,279                           | 2,680                      |
| BERT 2000-Step With Simultaneous Data Ingestion PM983                            | 0.05%           | 97.63%               | 4,470           | 4                                   | . 4                                | 128                                 | 7                                | 20                             | ) 4                                  | 1 128                               | 128                                  | 127                               | 8                              | 17,135                       | 33,601,880                    | 1,471                            | 814,030                           | 7,704                      |
| BERT 2000-Step With Simultaneous Data Ingestion PM9A3                            | 0.04%           | 99.32%               | 24,311          | 4                                   | . 4                                | 1 256                               | 10                               | ) 31                           |                                      | 128                                 | 1,280                                | 127                               | 12                             | 6,949                        | 62,821,436                    | 16,860                           | 411,639                           | 2,602                      |







### Please take a moment to rate this session.

Your feedback is important to us.



