
1 | © 2023 Storage Developer Conference. © 2023 Samsung Electronics Co., Ltd. All Rights Reserved.

Virtual Conference
September 28-29, 2021

libvfn
A low-level NVMe Application
and VFIO Driver Framework

Klaus Jensen, Samsung Electronics



2 | © 2023 Storage Developer Conference. © 2023 Samsung Electronics Co., Ltd. All Rights Reserved.

What is libvfn?

 Two “libraries”
 A VFIO utility library (#include <vfn/vfio.h>) with helpers for writing user space drivers for 

any PCI device
 Core helpers – vfio configuration, device bring up, IRQ configuration, mmio
 IOMMU helpers – iommu api, I/O virtual address allocator

 An NVMe user space driver (#include <vfn/nvme.h>)
 Polling and event-driven modes
 Low-level queue and register API

 LGPL, MIT dual-licensed
 Core library has zero external dependencies
 libnvme (and some GPL licensed support libraries) required for building tests and examples

 Designed (for now) for x86_64 and ARM64



3 | © 2023 Storage Developer Conference. © 2023 Samsung Electronics Co., Ltd. All Rights Reserved.

Sigh, another user space driver? Why?

 io_uring, io_uring_cmd… xNVMe? Hello?
 io_uring_cmd has dramatically reduced the need for user space NVMe drivers

 io_uring_cmd allows user space to “talk shop” (sending raw-ish NVMe commands)

 xNVMe provides high-performance abstractions over block (and raw NVMe I/O)
 unified API supporting several backends

 linux aio, io_uring, io_uring_cmd, spdk…, and libvfn
 command submission helpers
 callback-based “reactor” for completions
 NVMe type definitions
 asynchronous and synchronous submission modes



4 | © 2023 Storage Developer Conference. © 2023 Samsung Electronics Co., Ltd. All Rights Reserved.

io_uring_cmd and NVMe

 Fundamentally this enables a user to
 Submit raw-ish NVMe commands

 The submitted payload is slightly different from NVMe
 PRP1 repurposed as a single 64 bit pointer to a virtual memory address (or struct iovec)
 PRP2 split into two 32 bit values describing length (or number of vector elements) of the metadata 

and data pointers

… while not having to worry about bootstrapping the driver
 enabling, probing namespaces, configuring queues, etc.



5 | © 2023 Storage Developer Conference. © 2023 Samsung Electronics Co., Ltd. All Rights Reserved.

io_uring_cmd and NVMe

Available NVMe lingo remains bound by the environment provided (and 
optionally enforced) by the kernel driver
 Without CAP_SYS_ADMIN…

 only I/O commands without ”dangerous” command effects.
 simple white-listed admin commands (identify, etc.).

 With CAP_SYS_ADMIN…
 What if you delete queues? Detach a namespace? Whelp.

 You can insmod garbage.ko at anytime anyway, so no biggie really.
 A cardinal rule of using io_uring_cmd is do not screw up the driver.



6 | © 2023 Storage Developer Conference. © 2023 Samsung Electronics Co., Ltd. All Rights Reserved.

But, you want it all

As a host/device verification engineer, you want to
 issue any command and observe the fallout

 you probably do not care about the block layer, file systems, etc.
 you want to issue malformed commands (invalid PRPs, SGLs)

 without potentially (or rather, likely) bringing down the kernel with a fat finger 
resulting in an Oops and a reboot

And that is the domain of the safe user space driver
 It’s not just for performance



7 | © 2023 Storage Developer Conference. © 2023 Samsung Electronics Co., Ltd. All Rights Reserved.

User space drivers and NVMe

 Fundamentally this enables a user to
 Submit raw (as in totally raw) NVMe commands
… in a safe way

 no risk of breaking the kernel (there is no driver to break)
 … you might brick the drive if not careful

… while having to write a driver in user space to
 bootstrap the controller (configuring admin queues, probing namespaces, setting 

up queue memory, handling PRPs/SGLs…)



8 | © 2023 Storage Developer Conference. © 2023 Samsung Electronics Co., Ltd. All Rights Reserved.

libvfn vs. The Current State of The Art

Other user space drivers
 SPDK
 PyNVMe
 QEMU block/nvme

A direct comparison is not fair to either parties
 SPDK is so much more than just an NVMe driver

 io_uring_cmd-based bdev_xnvme is closing the gap with lib/nvme
 PyNVMe is a test-dedicated NVMe driver with a native Python API

 To the best of my knowledge, derived from SPDK
 Since v3, no longer open source



9 | © 2023 Storage Developer Conference. © 2023 Samsung Electronics Co., Ltd. All Rights Reserved.

libvfn vs. SPDK

 libvfn has similarities to SPDK, why is this work not in SPDK?
 SPDK is more than an NVMe driver, it is a “development kit”, an application 

framework
 bdev, fabrics support, etc.
 lots of useful sugar

 libvfn is fundamentally a userspace PCIe driver framework
 maybe more similarities with DPDK
 a low-level NVMe driver is included because that is what spurred the ”libvfio” part

 libvfn might be more suitable of embedding into other projects (YMMV)
 Zero dependencies
 Supports both polling and event-driven modes out of the box

 minimal API – less sugar included



10 | © 2023 Storage Developer Conference. © 2023 Samsung Electronics Co., Ltd. All Rights Reserved.

QEMU NVMe driver

 The QEMU NVMe driver allows the QEMU block layer to use a PCIe NVMe device 
directly as the underlying storage of VMs.
 an emulated device is layered on top (e.g., virtio-blk or even hw/nvme)
 single I/O queue pair
 extremely “to the point” when disregarding all the QEMU block layer plumbing

 libvfn borrows two techniques
 Fast command tracking
 Relatively simple IOVA allocator

 See Fam Zheng at KVM Forum ’19
https://www.youtube.com/watch?v=bwyHxb4tng0



11 | © 2023 Storage Developer Conference. © 2023 Samsung Electronics Co., Ltd. All Rights Reserved.

What makes user space drivers tick (safely)?

Safe user space PCIe device drivers rely on
1. the presence of a DMA remapping facility (a Translation Agent, or TA) to 

ensure isolation through host-managed mappings (in Address Translation 
and Protection Tables, or ATPTs)
 The PCI Express specification defines the concept (but not the implementation) of TAs
 Intel VT-d, AMD-Vi and ARM SMMU implement and provide such facilities

1. raw register access (typically memory-mapped I/O)

2. and interrupt programmability



12 | © 2023 Storage Developer Conference. © 2023 Samsung Electronics Co., Ltd. All Rights Reserved.

PCIe Address Translation
… and VFIO



13 | © 2023 Storage Developer Conference. © 2023 Samsung Electronics Co., Ltd. All Rights Reserved.

Legacy Platforms

 In general, on legacy platforms, 
PCI devices have full access to 
the entire host physical 
memory address space
 ”entire address space” depends on 

device capabilities
 if or not it can access 64 bit addresses

 Maliciously (or not), hardware may 
exploit this

Root Complex

Main Memory

Root 
Port

PCIe 
device

UNSAFE DMA



14 | © 2023 Storage Developer Conference. © 2023 Samsung Electronics Co., Ltd. All Rights Reserved.

Modern Platforms

On modern platforms, memory 
transactions may pass through 
a Translation Agent
 Software (typically the OS) 

maintains a translation table 
which controls what physical 
addresses a device may access
 Allows the OS to protect itself

against faulty (or malicious) 
hardware, but NOT from buggy 
drivers

Root Complex

Main Memory

Root 
Port

PCIe 
device

SAFE DMA

Translation 
Agent (TA)

Address Translation and 
Protection Table (ATPT)



15 | © 2023 Storage Developer Conference. © 2023 Samsung Electronics Co., Ltd. All Rights Reserved.

Not just for security…

Benefits of Address Translation

Address remapping
 map discontiguous memory into a contiguous range (scatter/gather)
 allow 32-bit only devices to access memory in 64-bit host memory space

 this was the original intent and purpose of a TA

Enable safe user-space drivers
 some smart guys figured out that this could be used by the kernel to

 allow user-space to create mappings, but only for its own memory pages
 isolate devices from each other



16 | © 2023 Storage Developer Conference. © 2023 Samsung Electronics Co., Ltd. All Rights Reserved.

Typical Use

Main Memory

PCIe 
deviceCPU

OS ManagedCPU
Page Tables

TA
Page Tables

Virtual Address (VA) I/O Virtual Address (IOVA)

Physical Address (PA)

M
M

U TA



17 | © 2023 Storage Developer Conference. © 2023 Samsung Electronics Co., Ltd. All Rights Reserved.

Typical Use

Main Memory

PCIe 
deviceCPU

OS ManagedCPU
Page Tables

TA
Page Tables

Virtual Address (VA) I/O Virtual Address (IOVA)

Physical Address (PA)

Application
void *p = mmap()

M
M

U TA



18 | © 2023 Storage Developer Conference. © 2023 Samsung Electronics Co., Ltd. All Rights Reserved.

Typical Use

Main Memory

PCIe 
deviceCPU

OS ManagedCPU
Page Tables

TA
Page Tables

Virtual Address (VA) I/O Virtual Address (IOVA)

Physical Address (PA)

Application

map 0x1000 to physaddr(p) 
in TA and pin memory

void *p = mmap()

M
M

U TA



19 | © 2023 Storage Developer Conference. © 2023 Samsung Electronics Co., Ltd. All Rights Reserved.

Typical Use

Main Memory

PCIe 
deviceCPU

OS ManagedCPU
Page Tables

TA
Page Tables

Virtual Address (VA) I/O Virtual Address (IOVA)

Physical Address (PA)

Application

read from 0x1000

map 0x1000 to physaddr(p) 
in TA and pin memory

void *p = mmap()

M
M

U TA



20 | © 2023 Storage Developer Conference. © 2023 Samsung Electronics Co., Ltd. All Rights Reserved.

Translation Agent Implementations

 The PCI specification only defines the concept of the Translation Agent 
as a logical entity – The details are vendor specific

 The capabilities of the TA varies
 The format of the ATPT varies
 The PCI topology defines the granularity of isolation

VFIO (and now, IOMMUFD) unifies it all under common uAPIs



21 | © 2023 Storage Developer Conference. © 2023 Samsung Electronics Co., Ltd. All Rights Reserved.

A unified API

An IOMMU and device agnostic API for securely exposing direct 
device access to userspace.
 Three main concepts - Containers, Groups and Devices
 The container manages address translations (a set of page tables) for a set of 

groups
 ioctls: SET_IOMMU, IOMMU_MAP_DMA, …

 The group represents a set of devices that share an isolation granularity
 ioctls: SET_CONTAINER, GET_DEVICE_FD, …

 The device is a, …well, device
 ioctls: GET_REGION_INFO, SET_IRQS, RESET, …



22 | © 2023 Storage Developer Conference. © 2023 Samsung Electronics Co., Ltd. All Rights Reserved.

Do we need a libvfio?

Best practices for using VFIO is scattered amongst various projects
 QEMU (hw/vfio, util/vfio-helpers.c)
 DPDK (lib/eal/linux/eal_vfio.{h,c})

Verbose uAPIs
 The uAPIs can be cumbersome, non-trivial and boiler-plate heavy to use

 risk of mistakes, steep learning curve
 Duplication, redundant code

 duplication, redundant code



23 | © 2023 Storage Developer Conference. © 2023 Samsung Electronics Co., Ltd. All Rights Reserved.

Using VFIO is a little boiler plate heavy

Steps required to bring up a PCI device (configure iommu group)
1. Configure VFIO “container” (open /dev/vfio/vfio)

a. Verify API version
b. Verify IOMMU support

2. Configure IOMMU group
a. Determine iommu group of device (i.e. /dev/vfio/N)
b. Determine if iommu group is “viable”
c. Set (attach) group to container

3. Configure IOMMU
a. Set IOMMU type on container
b. Retrieve IOMMU information (capabilities)



24 | © 2023 Storage Developer Conference. © 2023 Samsung Electronics Co., Ltd. All Rights Reserved.

Using VFIO is a little boiler plate heavy

Steps required to bring up a PCI device (configure device)
1. Get device handle (file descriptor)
2. Get device information

a. Verify that device is a PCI device
b. Get device region information (PCI configuration space)

3. Configure, initialize BARs
a. Get device region information per BAR

4. Set PCI bus master (write to configuration space)
5. Configure IRQs

1. Determine IRQ mechanisms (INTx, MSI, MSI-X)
2. Select IRQ mechanism depending on support



25 | © 2023 Storage Developer Conference. © 2023 Samsung Electronics Co., Ltd. All Rights Reserved.

/* Required data structures */
int container, group, device, i;
struct vfio_group_status group_status = { .argsz = sizeof(group_status) };
struct vfio_iommu_type1_info iommu_info = { .argsz = sizeof(iommu_info) };
struct vfio_iommu_type1_dma_map dma_map = { .argsz = sizeof(dma_map) };
struct vfio_device_info device_info = { .argsz = sizeof(device_info) };

/* Create a new container */
container = open("/dev/vfio/vfio", O_RDWR);

if (ioctl(container, VFIO_GET_API_VERSION) != VFIO_API_VERSION)
  /* Unknown API version */

if (!ioctl(container, VFIO_CHECK_EXTENSION, VFIO_TYPE1_IOMMU))
  /* Doesn't support the IOMMU driver we want. */

/* Open the group */
group = open("/dev/vfio/26", O_RDWR);

/* Test the group is viable and available */
ioctl(group, VFIO_GROUP_GET_STATUS, &group_status);

if (!(group_status.flags & VFIO_GROUP_FLAGS_VIABLE))
  /* Group is not viable (ie, not all devices bound for vfio) */

/* Add the group to the container */
ioctl(group, VFIO_GROUP_SET_CONTAINER, &container);

/* Enable the IOMMU model we want */
ioctl(container, VFIO_SET_IOMMU, VFIO_TYPE1_IOMMU);

/* Get addition IOMMU info */
ioctl(container, VFIO_IOMMU_GET_INFO, &iommu_info);

/* Allocate some space and setup a DMA mapping */
dma_map.vaddr = mmap(0, 1024 * 1024,
                     PROT_READ | PROT_WRITE, MAP_PRIVATE | MAP_ANONYMOUS, 0, 0);
dma_map.size = 1024 * 1024;
dma_map.iova = 0; /* 1MB starting at 0x0 from device view */
dma_map.flags = VFIO_DMA_MAP_FLAG_READ | VFIO_DMA_MAP_FLAG_WRITE;

ioctl(container, VFIO_IOMMU_MAP_DMA, &dma_map);

/* Get a file descriptor for the device */
device = ioctl(group, VFIO_GROUP_GET_DEVICE_FD, "0000:06:0d.0");

/* Test and setup the device */
ioctl(device, VFIO_DEVICE_GET_INFO, &device_info);

for (i = 0; i < device_info.num_regions; i++) {
  struct vfio_region_info reg = { .argsz = sizeof(reg) };
  reg.index = i;
  ioctl(device, VFIO_DEVICE_GET_REGION_INFO, &reg);

  /* Setup mappings... read/write offsets, mmaps
   * For PCI devices, config space is a region */
}

for (i = 0; i < device_info.num_irqs; i++) {
  struct vfio_irq_info irq = { .argsz = sizeof(irq) };
  irq.index = i;
  ioctl(device, VFIO_DEVICE_GET_IRQ_INFO, &irq);

  /* Setup IRQs... eventfds, VFIO_DEVICE_SET_IRQS */
}

/* Gratuitous device reset and go... */
ioctl(device, VFIO_DEVICE_RESET);

Using VFIO is a little boiler plate heavy



26 | © 2023 Storage Developer Conference. © 2023 Samsung Electronics Co., Ltd. All Rights Reserved.

Hide it!

 libvfn reduces this into a single API calls
 int vfio_pci_open(struct vfio_pci_device *pci, const char *bdf)

 Handles group configuration (initializing groups as needed)
 Lazy container (IOMMU) initialization



27 | © 2023 Storage Developer Conference. © 2023 Samsung Electronics Co., Ltd. All Rights Reserved.

What else do we need from a libvfio?

Container, Group and Device initialization helpers ✓

Other utility functions
 MMIO helpers ✓
 portable memory barriers, atomics ✓
 interrupt configuration ✓

DMA mapping helpers
 an I/O Virtual Address allocator ✓

 libvfn includes a pretty simple one (while we wait for the iommufd uAPI)



28 | © 2023 Storage Developer Conference. © 2023 Samsung Electronics Co., Ltd. All Rights Reserved.

Address Translation

 There are 2 things to solve
1. What I/O Virtual Address to use for a given Virtual Address?

 IOVA equal to VA? IOVAs starting from 0x0?

2. The ATPTs map I/O Virtual Addresses to Physial Addresses
 driver must map Virtual Addresses to I/O Virtual Addresses

 IOVA Allocation and Lookup respectively.



29 | © 2023 Storage Developer Conference. © 2023 Samsung Electronics Co., Ltd. All Rights Reserved.

IOVA Allocation

SPDK does not need an IOVA allocator
 memory is reserved upfront and pre-mapped
 IOVA is equal to VA

 all VAs have predetermined IOVAs

Applications must use SPDKs (DPDKs) memory allocator
 spdk_dma_malloc() and friends

 not trivial if you want (or have) to Bring Your Own Memory



30 | © 2023 Storage Developer Conference. © 2023 Samsung Electronics Co., Ltd. All Rights Reserved.

IOVA Allocation

 libvfn does not reserve any memory upfront
 user must manually map any memory to be used with devices

 sorta Bring Your Own Mapped Memory

Creating a mapping is expensive (system call)
 Some kind of pre-mapping is preferable



31 | © 2023 Storage Developer Conference. © 2023 Samsung Electronics Co., Ltd. All Rights Reserved.

IOVA Allocation

 libvfn borrows a simple, but effective, strategy 
from QEMU
 Static mappings are allocated from low addresses

going up
 useful for registered buffers that are reused
 these are never reclaimed

 Temporary mappings are allocated from high 
addresses going down
 useful for bounce buffering, slow path admin
 reclaimed when none in use

We can get rid of this when using iommufd

IOVA Address Space

0x0 Reserved

Static

Unused

0x7fffffffff Temporary



32 | © 2023 Storage Developer Conference. © 2023 Samsung Electronics Co., Ltd. All Rights Reserved.

IOVA Lookup

While SPDK maps IOVAs equal to VAs, lookup is still required
 to verify that a given buffer is mapped

 a DMA page fault is typically a catastrophic error

SPDK performs a page walk
 divides the entire 48-bit address space into 2MiB translations

 256T  1G  2M

 Corollary – Minimum mapping is 2MiB
 Fits well with SPDK’s use of huge pages



33 | © 2023 Storage Developer Conference. © 2023 Samsung Electronics Co., Ltd. All Rights Reserved.

IOVA Lookup

 libvfn uses a skip list modified for interval lookup
 Probabilistic data structure with average time complexity comparable to that of a 

balanced tree
 Arbitrary (aligned) lengths may be mapped



34 | © 2023 Storage Developer Conference. © 2023 Samsung Electronics Co., Ltd. All Rights Reserved.

VFIO Core Library API



35 | © 2023 Storage Developer Conference. © 2023 Samsung Electronics Co., Ltd. All Rights Reserved.

libvfn vfio-core (iommu api)

Create and address space container
 struct vfio_container *vfio_new(void)

Memory mapping and unmapping
 int vfio_map_vaddr(struct vfio_container *vfio, void *vaddr, size_t len,
                   uint64_t *iova);

 int vfio_unmap_vaddr(struct vfio_container *vfio, void *vaddr, size_t *len)



36 | © 2023 Storage Developer Conference. © 2023 Samsung Electronics Co., Ltd. All Rights Reserved.

VFIO Device Library API



37 | © 2023 Storage Developer Conference. © 2023 Samsung Electronics Co., Ltd. All Rights Reserved.

libvfn vfio-pci

Open and initialize device
 int vfio_pci_open(struct vfio_pci_device *pci, const char *bdf)

Configure IRQs
 int vfio_set_irq(struct vfio_device *dev, int *eventfds, int count)

 int vfio_disable_irq(struct vfio_device *dev)



38 | © 2023 Storage Developer Conference. © 2023 Samsung Electronics Co., Ltd. All Rights Reserved.

libvfn vfio-pci

BAR mapping and unmapping
 void *vfio_pci_map_bar(struct vfio_pci_device *pci, int idx, …)

 void vfio_pci_unmap_bar(struct vfio_pci_device *pci, int idx, void *mem, …)

Read and write PCI Configuration Space
 ssize_t vfio_pci_read_config(struct vfio_pci_device *pci, void *buf, …)

 ssize_t vfio_pci_write_config(struct vfio_pci_device *pci, void *buf, …)



39 | © 2023 Storage Developer Conference. © 2023 Samsung Electronics Co., Ltd. All Rights Reserved.

NVMe Library API



40 | © 2023 Storage Developer Conference. © 2023 Samsung Electronics Co., Ltd. All Rights Reserved.

libvfn NVMe

 The “example” NVMe driver in libvfn is about 600 lines of code
 src/nvme/core.c

 no opaque data structures

 Minimal functionality in core
 bootstraps the admin queue
 provides helpers to manage I/O submission and completion queues 

 (configure queues for shadow doorbells if supported by controller)



41 | © 2023 Storage Developer Conference. © 2023 Samsung Electronics Co., Ltd. All Rights Reserved.

NVMe (super quick) Refresher

NVMe uses circular lock-free queues for 
submission and completions
 tail incremented when producing to the 

queue
 head incremented when consuming from 

the queue

Queue

head -> 0 used

1 used

2 used

3 empty <- tail

4 empty

5 empty

6 empty

7 empty



42 | © 2023 Storage Developer Conference. © 2023 Samsung Electronics Co., Ltd. All Rights Reserved.

The minimal API for PCIe-based NVMe?

 4 core queue manipulation functions (the Level One API)

 void nvme_sq_post(struct nvme_sq *sq, const void *sqe)
Copy an SQE to a submission queue

 void nvme_sq_update_tail(struct nvme_sq *sq)
Notify device about produced SQEs

 struct nvme_cqe *nvme_cq_get_cqe(struct nvme_cq *cq)
Get pointer to next CQE (might be available, might not)

 void nvme_cq_update_head(struct nvme_cq *cq) 
Notify device about consumed CQEs



43 | © 2023 Storage Developer Conference. © 2023 Samsung Electronics Co., Ltd. All Rights Reserved.

The Level Two API (nvme_rq)

May be a little daunting to handle commands using the L1 API
 Memory for each SQE payload must be manually mapped into the data pointer

 Requires mapping PRPs, allocating a page for the PRP list if required
 Each CQE must be matched with the original context of the command

 The L2 API (struct nvme_rq) provides helpers for this
 Each struct nvme_sq is prebaked with a struct nvme_rq per SQE
 Each struct nvme_rq is prebaked with memory for PRP list entries



44 | © 2023 Storage Developer Conference. © 2023 Samsung Electronics Co., Ltd. All Rights Reserved.

The Level Two API (nvme_rq)

Requests are acquired from and released to SQs as needed
 struct nvme_rq *nvme_rq_acquire[_atomic](struct nvme_sq *sq)
 void nvme_rq_release[_atomic](struct nvme_rq *rq)

 atomic versions may be useful if a single CQ is associated with multiple SQs and handled in 
a dedicated thread

 void nvme_rq_prep_cmd(struct nvme_rq *rq, union nvme_cmd *cmd)

A request may be retrieved from a CQE directly
 struct nvme_rq *nvme_rq_from_cqe(struct nvme_ctrl *ctrl,

struct nvme_cqe *cqe)



45 | © 2023 Storage Developer Conference. © 2023 Samsung Electronics Co., Ltd. All Rights Reserved.

The Level Two API (nvme_rq)

A contiguous buffer may be mapped into the PRPs
 int nvme_rq_map_prp(struct nvme_rq *rq, union nvme_cmd *cmd,

uint64_t iova, size_t len)

Or a discontigous buffer (as described by a struct iovec)
 int nvme_rq_mapv_prp(struct nvme_rq *rq, union nvme_cmd *cmd,

struct iovec *iov, int niov)



46 | © 2023 Storage Developer Conference. © 2023 Samsung Electronics Co., Ltd. All Rights Reserved.

Examples



47 | © 2023 Storage Developer Conference. © 2023 Samsung Electronics Co., Ltd. All Rights Reserved.

Basic Example (read register)

struct nvme_ctrl ctrl = {};

/* configure and enable controller (default options) */
nvme_init(&ctrl, “0000:01:00.0”, NULL)

void *regs = ctrl.regs;

/* read BAR0 (the NVME MBAR) register */
uint64_t cap = le64_to_cpu(mmio_read64(regs + NVME_REG_CAP));

/* print a value from the register */
printf(“CAP.MQES %lx\n”, NVME_CAP_MQES(cap));



48 | © 2023 Storage Developer Conference. © 2023 Samsung Electronics Co., Ltd. All Rights Reserved.

Identify Example (issue command asynchronously)

/* allocate and map memory */
size_t len = pgmap(&vaddr, NVME_IDENTIFY_DATA_SIZE);
vfio_map_vaddr(vfio, vaddr, NVME_IDENTIFY_DATA_SIZE, &iova);

/* setup command */
cmd.identify = (struct nvme_cmd_identify){.opcode = nvme_admin_identify, .cns = NVME_IDENTIFY_CNS_CTRL};

struct nvme_rq *rq = nvme_rq_acquire(ctrl.adminq.sq);

nvme_rq_map_prp(rq, &cmd, iova, NVME_IDENTIFY_DATA_SIZE);

nvme_rq_exec(rq, &cmd); /* post and ring doorbell */
nvme_rq_spin(rq, &cqe); /* spin on cq */

nvme_rq_release(rq);

printf("vid 0x%"PRIx8"\n", (struct nvme_id_ctrl *)vaddr->vid);



49 | © 2023 Storage Developer Conference. © 2023 Samsung Electronics Co., Ltd. All Rights Reserved.

Identify Example (eventfd)

int efd = eventfd(0, 0);

/* register eventfd for vector 0 */
vfio_set_irq(&ctrl.pci.dev, &efd, 1);

nvme_rq_map_prp(rq, &cmd, iova, NVME_IDENTIFY_DATA_SIZE);
nvme_rq_exec(rq, &cmd);

/* wait for interrupt */
uint64_t v;
read(efd, &v, sizeof(v));

/* will not spin */
nvme_rq_spin(rq, &cqe);



50 | © 2023 Storage Developer Conference. © 2023 Samsung Electronics Co., Ltd. All Rights Reserved.

Case Study
Integration with xNVMe



51 | © 2023 Storage Developer Conference. © 2023 Samsung Electronics Co., Ltd. All Rights Reserved.

Integration in xNVMe

 libvfn is available as an alternative to the SPDK backend in xNVMe
 makes xNVMe a little lighter

 xNVMe requires backends to implement
 buffer allocation and mapping

 maps directly to mmap (allocation) and DMA mapping of the buffers

 async interface
 queue init, poke, (vectored) io



52 | © 2023 Storage Developer Conference. © 2023 Samsung Electronics Co., Ltd. All Rights Reserved.

Integration in xNVMe

 The asynchronous interface in xNVMe is based on callbacks
 libvfn’s struct nvme_rq opaque member stores the xNVMe command context

 holds the callback and argument to be executed upon command completion

 The xNVMe asynchronous API maps almost 1-to-1 with libvfn
 queue init

 nvme_create_ioqpair()
 io

 nvme_rq_post/exec()
 poke

 loop around nvme_cq_get_cqe() and nvme_rq_from_cqe()



53 | © 2023 Storage Developer Conference. © 2023 Samsung Electronics Co., Ltd. All Rights Reserved.

Performance Numbers
Are we on par?



54 | © 2023 Storage Developer Conference. © 2023 Samsung Electronics Co., Ltd. All Rights Reserved.

Performance (Setup)

 Intel(R) Xeon(R) CPU E3-1240 v6 @ 3.70GHz
 An oldie, but a goodie…

 Intel NVMe Optane Memory Series
 MEMPEK1W016GA

 16GB, M.2 80mm PCIe 3.0, 20nm, 3D Xpoint™

 1 core (1 thread, 1 queue) – random read (512 bytes)
 NVMe queue size is 128 (device max)
 I/O queue depths 1, 2, 4, 8 … 64
 10s warmup, 30s proper



55 | © 2023 Storage Developer Conference. © 2023 Samsung Electronics Co., Ltd. All Rights Reserved.

Performance (program)

As close to an apples-to-apples comparison with SPDK as possible
 libvfn examples/perf.c mirrors spdk examples/nvme/perf/perf.c

 Re-issue command on completion
 Same time measurement strategy (RDTSC-based, not clock_gettime)
 Everything pre-allocated



56 | © 2023 Storage Developer Conference. © 2023 Samsung Electronics Co., Ltd. All Rights Reserved.

Performance (IOPS)



57 | © 2023 Storage Developer Conference. © 2023 Samsung Electronics Co., Ltd. All Rights Reserved.

Performance (Average Latency)



58 | © 2023 Storage Developer Conference. © 2023 Samsung Electronics Co., Ltd. All Rights Reserved.

Wrapping Up
Examples and Next Steps



59 | © 2023 Storage Developer Conference. © 2023 Samsung Electronics Co., Ltd. All Rights Reserved.

What about iommufd?

Yes.

We are following the latest developments and testing
 My colleague, Joel Granados, is integrating iommufd support
 Rework vfio parts to use this as appropriate
 Does requires some public API changes (planned for v4)

 vfio_{map,unmap}_vaddr() iommu_{map,unmap}_vaddr()
 We already hide the group-centric VFIO API behind a device centric abstraction



60 | © 2023 Storage Developer Conference. © 2023 Samsung Electronics Co., Ltd. All Rights Reserved.

Next Steps

More NVMe helpers
 SGL mapping helpers
 Pluggable IOVA allocation and lookup
 More sugar? Maybe in another support library?

Non 4KB page size based systems
 Some assumptions in the core. Mads is working on that.

WONTFIX’es
 High level event framework (roll your own)



61 | © 2023 Storage Developer Conference. © 2023 Samsung Electronics Co., Ltd. All Rights Reserved.

Questions?
Grab libvfn at github.com/OpenMPDK/libvfn

stable v2
v3 just released



62 | © 2023 Storage Developer Conference. © 2023 Samsung Electronics Co., Ltd. All Rights Reserved.

Please take a moment to rate this session. 
Your feedback is important to us. 



63 | © 2023 Storage Developer Conference. © 2023 Samsung Electronics Co., Ltd. All Rights Reserved.

Backup for Questions



64 | © 2023 Storage Developer Conference. © 2023 Samsung Electronics Co., Ltd. All Rights Reserved.

The Level Two API (nvme_rq)

sq

0 1 2 3

executing

completed



65 | © 2023 Storage Developer Conference. © 2023 Samsung Electronics Co., Ltd. All Rights Reserved.

The Level Two API (nvme_rq)

sq

0 1 2

3rq = nvme_rq_acquire(sq);
nvme_rq_exec(rq, cmd);

executing

rq

completed



66 | © 2023 Storage Developer Conference. © 2023 Samsung Electronics Co., Ltd. All Rights Reserved.

The Level Two API (nvme_rq)

sq

0 1

2

3rq = nvme_rq_acquire(sq);
nvme_rq_exec(rq, cmd);

executing

rq

completed



67 | © 2023 Storage Developer Conference. © 2023 Samsung Electronics Co., Ltd. All Rights Reserved.

The Level Two API (nvme_rq)

sq

0 1 3

2cqe = nvme_cq_get_cqe(cq);
rq = nvme_rq_from_cqe(cqe);

executing

rq

completed



68 | © 2023 Storage Developer Conference. © 2023 Samsung Electronics Co., Ltd. All Rights Reserved.

The Level Two API (nvme_rq)

sq

0 1 3

nvme_rq_release(rq);

executing

completed

2



69 | © 2023 Storage Developer Conference. © 2023 Samsung Electronics Co., Ltd. All Rights Reserved.

The Level Two API (nvme_rq)

sq

0 1 3

cqe = nvme_cq_get_cqe(cq);
rq = nvme_rq_from_cqe(cqe);

executing

completed

2rq



70 | © 2023 Storage Developer Conference. © 2023 Samsung Electronics Co., Ltd. All Rights Reserved.

The Level Two API (nvme_rq)

sq

0 1 3 2

nvme_rq_release(rq);

executing

completed



71 | © 2023 Storage Developer Conference. © 2023 Samsung Electronics Co., Ltd. All Rights Reserved.

Regular
struct nvme_rq *rq = sq->rq_top;
if (!rq) {
  errno = EBUSY;
  return NULL;
}

sq->rq_top = rq->rq_next;

return rq;

Atomic
struct nvme_rq *rq = load_acquire(&sq->rq_top);

while (rq && !cmpxchg(&sq->rq_top, rq, rq->rq_next))
  ;

if (!rq)
  errno = EBUSY;

return rq;

nvme_rq_acquire()



72 | © 2023 Storage Developer Conference. © 2023 Samsung Electronics Co., Ltd. All Rights Reserved.

Regular
struct nvme_sq *sq = rq->sq;

nvme_rq_reset(rq);

rq->rq_next = sq->rq_top;
sq->rq_top = rq;

Atomic
struct nvme_sq *sq = rq->sq;

nvme_rq_reset(rq);

rq->rq_next = load_acquire(&sq->rq_top);

while (!cmpxchg(&sq->rq_top, rq->rq_next, rq))
  ;

nvme_rq_release()



73 | © 2023 Storage Developer Conference. © 2023 Samsung Electronics Co., Ltd. All Rights Reserved.

NVMe Refresher
… it’s just queue processing



74 | © 2023 Storage Developer Conference. © 2023 Samsung Electronics Co., Ltd. All Rights Reserved.

NVMe Refresher

Host informs the device about new 
entries in the queue using a “doorbell” 
mechanism
 A “doorbell” is the common name for a 

write-only memory-mapped I/O register

PCI devices expose these registers in 
the PCI Configuration Space
 In NVMe, the controller registers are 

located in the NVMe “MBAR” (BAR 0 & 1)

0 15 16 31

Device ID Vendor ID 0x00

---

0x04

0x08

0x0C

NVMe MBAR (BAR 0 & 1)
0xffabcdef

0x10

0x14

BAR 2 0x18

BAR 3 0x1C

BAR 4 0x20

BAR 5 0x24

--- 0x28

Subsystem ID Subsystem Vendor 
ID

0x2C

---

0x30

0x34

0x38

0x3C



75 | © 2023 Storage Developer Conference. © 2023 Samsung Electronics Co., Ltd. All Rights Reserved.

NVMe Refresher

Start End Size Symbol Description

0x0 0x07 8 CAP Controller Capabilities

0x08 0x0b 4 VS Version

0x14 0x17 4 CC Controller Configuration

0x28 0x2f 8 ASQ Admin Submission Queue Base Address

0x30 0x37 8 ACQ Admin Completion Queue Base Address

...

0x1000 0x1003 4 SQ0TBDL Submission Queue 0 Tail Doorbell (Admin)

0x1004 0x1007 4 CQ0HDBL Completion Queue 0 Head Doorbell (Admin)

0x1008 0x100b 4 SQ1TBDL Submission Queue 1 Tail Doorbell

0x100c 0x100f 4 CQ1HBDL Completion Queue 1 Head Doorbell

0x1000 + (2n << 2) 0x1003 + (2n << 2) 4 SQnTBDL Submission Queue n Tail Doorbell

0x1000 + (2n+1 << 2) 0x1003 + (2n+1 << 2) 4 CQnHDBL Completion Queue n Head Doorbell



76 | © 2023 Storage Developer Conference. © 2023 Samsung Electronics Co., Ltd. All Rights Reserved.

NVMe Refresher

Start End Size Symbol Description

0x0 0x07 8 CAP Controller Capabilities

0x08 0x0b 4 VS Version

0x14 0x17 4 CC Controller Configuration

0x28 0x2f 8 ASQ Admin Submission Queue Base Address

0x30 0x37 8 ACQ Admin Completion Queue Base Address

...

0x1000 0x1003 4 SQ0TBDL Submission Queue 0 Tail Doorbell (Admin)

0x1004 0x1007 4 CQ0HDBL Completion Queue 0 Head Doorbell (Admin)

0x1008 0x100b 4 SQ1TBDL Submission Queue 1 Tail Doorbell

0x100c 0x100f 4 CQ1HBDL Completion Queue 1 Head Doorbell

0x1000 + (2n << 2) 0x1003 + (2n << 2) 4 SQnTBDL Submission Queue n Tail Doorbell

0x1000 + (2n+1 << 2) 0x1003 + (2n+1 << 2) 4 CQnHDBL Completion Queue n Head Doorbell

Using MMIO, the host writes 
the tail/head values to the 

relevant doorbells

“Ringing the Doorbell”


	libvfn
	What is libvfn?
	Sigh, another user space driver? Why?
	io_uring_cmd and NVMe
	io_uring_cmd and NVMe
	But, you want it all
	User space drivers and NVMe
	libvfn vs. The Current State of The Art
	libvfn vs. SPDK
	QEMU NVMe driver
	What makes user space drivers tick (safely)?
	PCIe Address Translation
	Legacy Platforms
	Modern Platforms
	Not just for security…�Benefits of Address Translation
	Typical Use
	Typical Use
	Typical Use
	Typical Use
	Translation Agent Implementations
	A unified API
	Do we need a libvfio?
	Using VFIO is a little boiler plate heavy
	Using VFIO is a little boiler plate heavy
	Using VFIO is a little boiler plate heavy
	Hide it!
	What else do we need from a libvfio?
	Address Translation
	IOVA Allocation
	IOVA Allocation
	IOVA Allocation
	IOVA Lookup
	IOVA Lookup
	VFIO Core Library API
	libvfn vfio-core (iommu api)
	VFIO Device Library API
	libvfn vfio-pci
	libvfn vfio-pci
	NVMe Library API
	libvfn NVMe
	NVMe (super quick) Refresher
	The minimal API for PCIe-based NVMe?
	The Level Two API (nvme_rq)
	The Level Two API (nvme_rq)
	The Level Two API (nvme_rq)
	Examples
	Basic Example (read register)
	Identify Example (issue command asynchronously)
	Identify Example (eventfd)
	Case Study
	Integration in xNVMe
	Integration in xNVMe
	Performance Numbers
	Performance (Setup)
	Performance (program)
	Performance (IOPS)
	Performance (Average Latency)
	Wrapping Up
	What about iommufd?
	Next Steps
	Questions?
	Please take a moment to rate this session. 
	Backup for Questions
	The Level Two API (nvme_rq)
	The Level Two API (nvme_rq)
	The Level Two API (nvme_rq)
	The Level Two API (nvme_rq)
	The Level Two API (nvme_rq)
	The Level Two API (nvme_rq)
	The Level Two API (nvme_rq)
	nvme_rq_acquire()
	nvme_rq_release()
	NVMe Refresher
	NVMe Refresher
	NVMe Refresher
	NVMe Refresher

