STORAGE DEVELOPER CONFERENCE

Overcoming SMBus Limitations with I3C

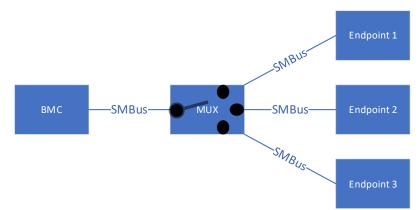
Presented by: Janusz Jurski (Intel), Myron Loewen (Solidigm), Anthony Constantine (Intel), Juan Orozco (Intel)

Co-authors: Bryan Kelly (Microsoft), Zbigniew Lukwinski(Intel)

Agenda

- SMBus Limitations
- I3C-based Solution
- Experimentation
- Summary & Call to Action

SMBus Limitations


3 | ©2023 Storage Developer Conference ©. Intel, Solidigm, Microsoft. All Rights Reserved.

SMBus/I2C Sideband Management Overview

- <u>SMBus</u>/I2C sideband interface used by all PCIe/CXL form factors, incl. storage
- No common I2C/SMBus addressing architecture
 - ARP expected by CEM Spec but often not implemented (ARP optional in SMBus spec)
 - system vendors maintain address databases to avoid collisions
 - vendor-dependent proprietary solutions used instead, typically involving I2C/SMBus MUX
- Security expectations drive MUX-based architectures
 - prevents peer-to-peer communications

Legacy use cases

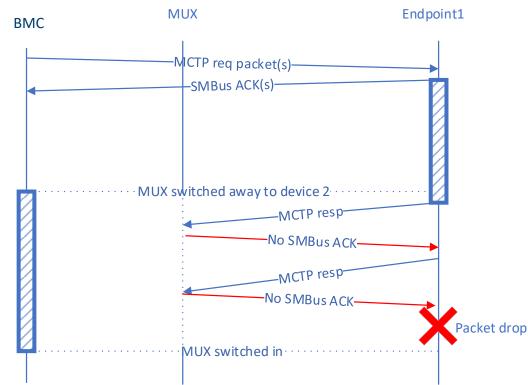
- simple communication driven by only BMC with quick responses by endpoints (FRU read, temp sensor, etc.)
- low bandwidth sufficient (typically 100kHz)

MCTP over SMBus w/MUX & Advanced Use Cases Don't Work

MCTP over SMBus expects continuous SMBus

- expectation not valid in systems with MUX
- SMBus arbitration does not work over MUX-based I2C/SMBus

Endpoints try to transmit when MUX switched away


 eollowing the specifications, due to no ACK, they retry and drop packets after a couple of milliseconds

MCTP over SMBus with MUX generally unusable for:

- long-running tasks (SPDM, etc.)
- asynchronous communication (alerts, events, notifications, etc.)
- streaming from endpoint (telemetry, etc.)
- large MCTP messages fragmented into many MCTP packets (frequent packet losses in these scenarios)

MUX switching during ongoing transmission

- truncated transactions interpreted/consumed with unpredictable consequences
- many SMBus devices hang due to glitches

Packet Losses with Typical SMBus MUX Configuration

1. Sample successful request-response sequence when SMBus MUX not switched away

2. Failure when SMBus MUX switched away to another device

2a. Retry every 4.6us (no ACK when SMBus MUX switched away)

6 | ©2023 SNIA. All Rights Reserved.

Workarounds Today

Long running tasks or large MCTP messages:

- BMC waiting idle for endpoint to process the request and respond
 - 100s of milliseconds wasted with every transaction
- proprietary or higher-protocol control commands pause/resume device responses
 - NVMe-MI standardizes this approach to some extent (with NVMe-MI-specific assumptions)
- retries (usually don't work)
 - no way for the device to be aware of the MUX being switched away
 - retries repeat same sequence with same result
- every vendor is different
- No workaround for truly asynchronous communication

I3C-based Solution

8 | ©2023 Storage Developer Conference ©. Intel, Solidigm, Microsoft. All Rights Reserved.

Industry Landscape with I3C

MIPI I3C Basic – natural upgrade to address SMBus/I2C limitations

- Upgrade details defined in EDSFF specification (<u>SNIA SFF-TA-1009 revision 3.1,</u> published January 6th, 2023)
- Expecting other form factors to follow EDSFF solution
 - SNIA is donating EDSFF I3C solution to other standards organizations to keep specs aligned
 - PCIe Architectural Out-of-Band Management under review
- MCTP I3C Binding defined by DMTF
- Common I3C HUB specification (Intel RDC #766079) with standard pinout and registers (HW and SW drop-in compatible)
 - Renesas part numbers: RG3MxxB12B0
 - NXP part numbers: P3H2x4x
- Off-the shelf components already available from multiple vendors

I3C Addresses SMBus Limitations

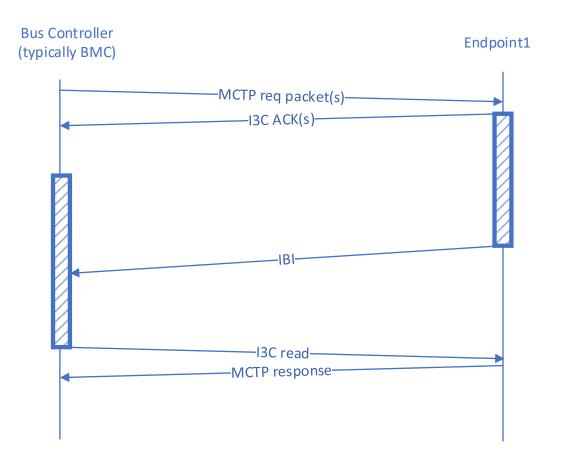
- Clear addressing architecture all devices support dynamic address
- Comprehends MUX-based and MUX-less topologies:
 - BMC is initiator driving clock (redundancy supported)
 - Only BMC performs packet writes and reads
 - Endpoints do not initiate transactions
 - BMC optionally enables IBIs from endpoints (useful in MUX-less topology or with HUB)
- Improves security:
 - peer-to-peer communications must go thru I3C Controller (typically BMC)
- Other improvements:
 - supports in-band interrupts (IBIs)
 - supports in-band reset/recovery
 - 12.5Mbps in SDR mode, 25Mbps in DDR mode

MCTP I3C Binding (DSP0233)

Single I3C Controller

- only BMC initiates read/write transactions
- works well even with traditional MUXes

Optional IBIs


improve efficiency but no data loss if dropped

I3C CCCs to standardize behaviors, e.g.:

- discover capabilities (e.g., protocol)
- MTU negotiation
- IBI enable/disable

Binding improves robustness over pure MIPI I3C Basic

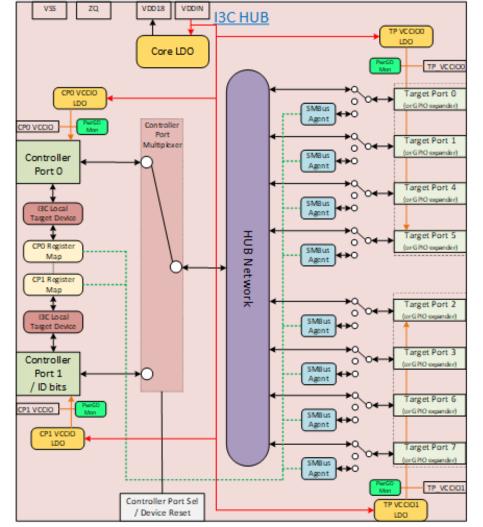

added error detection and recovery mechanisms

I3C Discovery Flow as per EDSFF Specification

- Discover if any I3C-capable devices are attached
 - Using I3C reserved 0x7E address
- Discover if any SMBus-only devices are attached
 - using ARP or static address scan
- Stay in SMBus mode if at least one SMBus-only device present on targeted EDSFF port
 - I3C-capable devices still must be backwards compatible
 - MCTP over SMBus binding in use
- Switch to I3C if all devices on targeted EDSFF port support I3C
 - transition to lower voltage
 - MCTP over I3C binding in use
- Each downstream port can operate at either I3C or SMBus independently

I3C HUB Solves SMBus Issues & Enables Transition to I3C

No arbitration or address issues for legacy SMBus


- downstream port SMBus agent allows asynchronous and bidirectional communication with multiple SMBus endpoints
 - no endpoint devices changes needed to avoid SMBus limitations
- SMBus agents enable concurrent and independent communication on each port
- supports "SMBus busy signaling" for flow control to prevent packet losses with protocols such as MCTP
- no bus switching during transmission as in existing SMBus/I2C Muxes

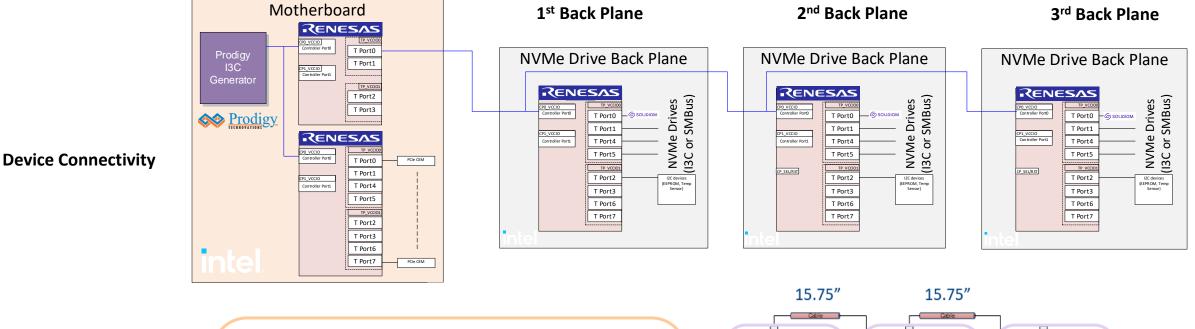
Supports mix of SMBus and I3C devices

- downstream ports independently operate in I3C transparent mode or SMBus agent mode
- port in I3C mode allows for electrical isolation while maintaining same logical I3C network (protocol transparent)
- supports voltage translation

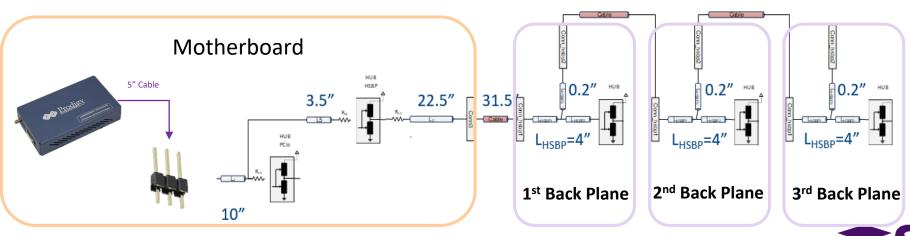
Reduces number of SMBus/I3C ports needed on BMCs

- up to 8 downstream ports
- two upstream ports (allowing upstream device redundancy)

🛑 🛑 🔵 🌒

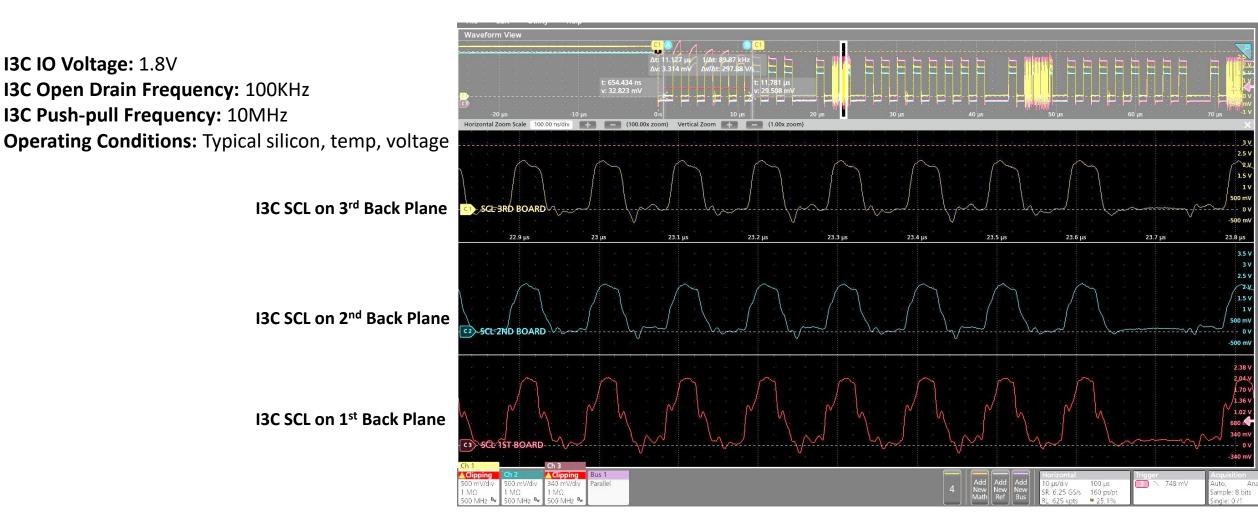

Experimentation

Intel[®], Solidigm[®], Aspeed[®], Renesas[®], Introspect[®], Microchip[®], Microsoft[®], Total Phase[®], and Aardvark[™] registered and unregistered trademarks, service marks, and logos are the property of their owners. Unauthorized use is strictly prohibited.



14 | ©2023 Storage Developer Conference ©. Intel, Solidigm, Microsoft. All Rights Reserved.

I3C Electricals in typical Storage back plane 2-wire (I3C/SMBus) Channel Topologies



Physical Topology

23

I3C Electricals in typical Storage back plane 2-wire (I3C/SMBus) Channel Topologies

Logic Analyzer System Architecture for PCIe/CXL ntrospect (trace capture) BMC with I3C Controller (Aspeed®) SOLIDIGM. probe **AST2600** OpenBMC FW with MCTP over I3C binding support HUB (Renesas® RG3M87B12) Enables SMBus to I3C transition as per EDSFF intel SFF-TA-1009 specification RENESAS Fixes MCTP over SMBus multi-initiator related challenges with multiplexers HUB 2-wire bus BMC 13C Renesas Aspeed AST2600 Common HUB specification (drop-in compatible RG3M87B12 devices from multiple sources) ASPEED I3C-capable device (Microchip®) PIC18F16Q20 Supports MCTP over I3C binding with sample commands Legacy SMBus device (emulated with Total Phase[®] Aardvark[™]) **Experimentation Setup**

MICROCHIP

Microchip

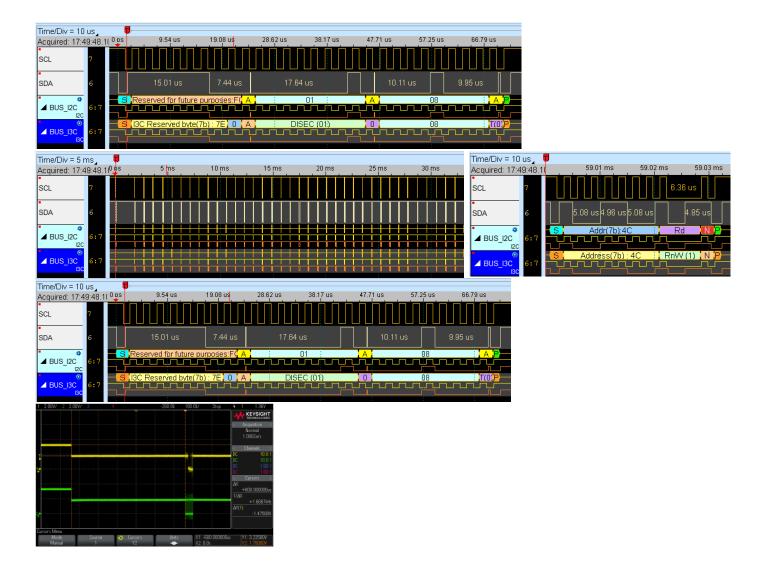
PIC18F-Q20 Microcontroller

Total Phase

Aardvark

TOTAL PHASE

17 | ©2023 SNIA. All Rights Reserved.


Unaware of I3C

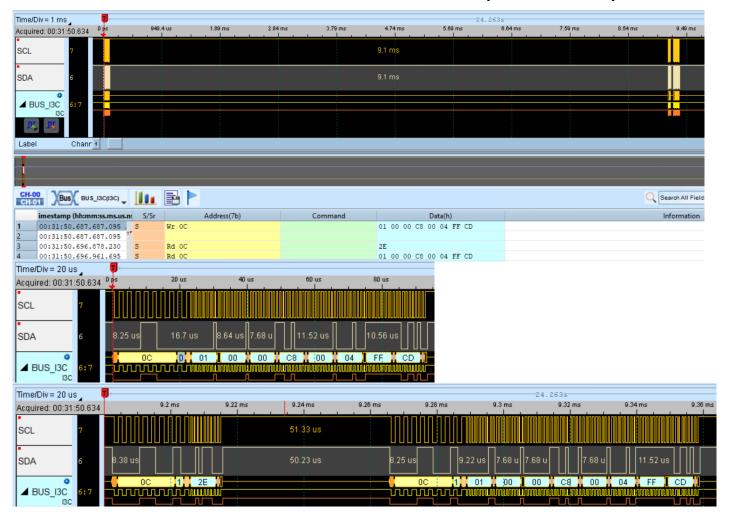
Unable to work efficiently with multiplexed SMBus (separate experimentation)

Introspect SV4E logic analyzer

Experimentation – Flow with only I3C-capable Devices

1. DISEC in SMBus mode (I3C-capable device ACKs)

2. SMBus discovery 2a. No SMBus device ACKed

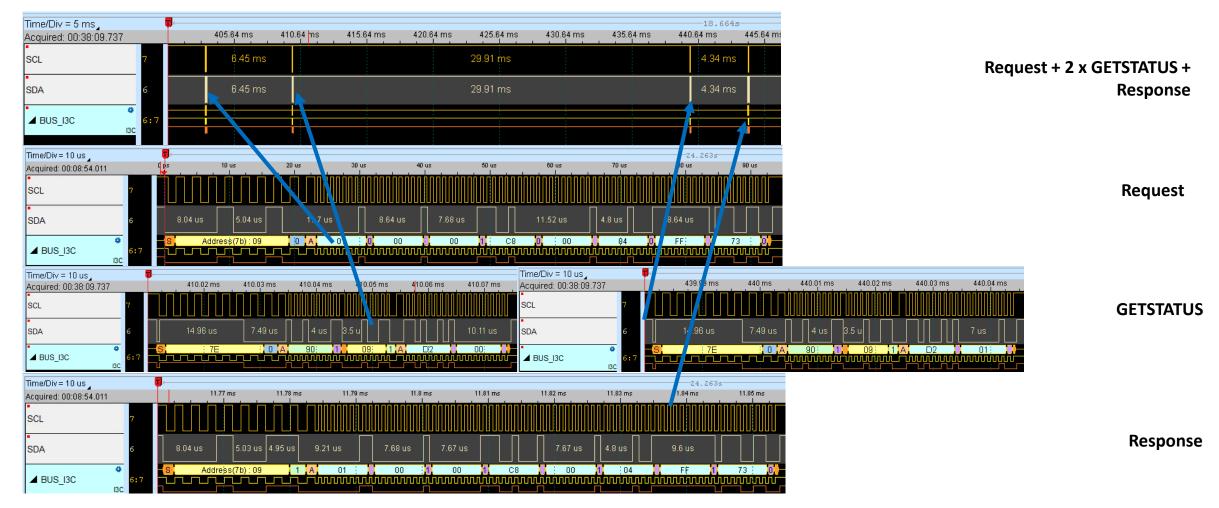

3. DISEC in SMBus mode (triggers switch to I3C mode)

4. Voltage transition 3.3V to 1.8V (I3C transactions follow – next slides)

Experimentation – MCTP request and response in I3C mode with IBI

I3C-capable device responds in I3C mode

Request + IBI + Response


Request

IBI + Response

Experimentation – MCTP request and response in I3C mode with polling

I3C-capable device responds in I3C mode

Summary & Call to Action

21 | ©2023 Storage Developer Conference ©. Intel, Solidigm, Microsoft. All Rights Reserved.

Summary & Call to Action

- Experimentation confirmed off-the-shelf devices enable backward-compatible transition from SMBus to I3C and address key SMBus limitations
 - MCTP over I3C works well regardless of system architecture
 - MCTP over SMBus works well when MUX is replaced by I3C HUB no endpoint device changes needed
- Adopt consistent (and backward-compatible) solution in other industry specifications
 - PCI-SIG: <u>PCI-SIG Protocol WG Sideband Ad-hoc WG</u>, <u>U.2/SFF</u>, <u>M.2</u>
 - OCP: <u>Datacenter NVMe® SSD Specification</u>, <u>Datacenter Secure Control Module (DC-SCM) 2.0</u>, <u>OCP NIC 3.0</u>, <u>OCP Firmware Recovery</u>, <u>DC-MXIO/DC-MHS</u>, <u>OCP OAI/UBB/OAM</u>, ...
- Make your product plans!
 - Intel's reference platform HW ready now, OpenBMC FW aligned with PCIe 6.0
 - Solidigm ready to co-validate with additional partners in 2024

Please take a moment to rate this session.

Your feedback is important to us.

23 | ©2023 SNIA. All Rights Reserved.