SAMSUNG

STORAGE DEVELOPER CONFERENCE

Is SSD with CXL Interfaces Brilliantly Stupid or Stupidly Brilliant?

YANG SEOK KI, Ph.D.

Vice President, Memory Solutions Lab., Samsung Electronics

Stupid or Brilliant?

Draisine (Running machine), 1817: the 1st bicycle in record

The Jazz Singer, 1927: the 1st movie with an audio track

SSD with CXL Interfaces

Storage with memory and/or storage interfaces

Technical Needs

Memory Hierarchy

Keep hot data close to CPU using data locality

Memory Hierarchy

Traditional Workload

Needs (1): Persistent Memory

Discontinuation of the leading technology

Storage: DAOS (Distributed Application Object Storage)

Needs (2): Secondary Memory

High overhead of virtual memory implementation

<OS-level> Swap for memory extension on disk

<User-level> Redis Auto Tiering for memory extension on SSD

Needs (3): Fast Small IO

High overhead of IOs smaller than 4KB

CXL-based SSD

A Hybrid device of DRAM and NAND with CXL interfaces

CXL (Compute Express Link)

 Asynchronous blocking memory interface with optional coherency

CXL Device Types

Device types based on protocols, not functions

CXL-based SSD as Persistent Memory

Type-3 device similar to NVDIMM

Dump

Size

Dump

Time(s)

Dump

Energy

Power Failure Protection

23

Persistent Memory Performance

Key Features & Benefits

- Battery-backed DRAM with speed comparable to DDR5
- Persistence achieved with data dumps to NAND flash
- Supports flush-on-fail with CXL
 2.0 GPF feature

Memory-Semantic SSD[™] Persistency Demo

CXL-based SSD as Secondary Memory

CXL-based SSD with built-in DRAM

Built-in DRAM

- Processing AI and ML applications, usually need relatively small-sized data chunks
- Applications can write data to the DRAM cache at DRAM speed

CXL Technology

 Low latency enabled by CXL.memory protocol

Secondary Memory Options

• Example of Memory Configuration with TM Mode

Option 1 Performance

Key Features & Benefits

- Small granularity data access enable performance scales with cache hits
- Direct memory access advantage; no software cache overhead
- Large memory capacity at lower TCO

**Compared to PCIe Gen4 NVMe SSD

CXL-based SSD as Fast Small IO Storage

CXL.Mem Read	Random Perf (128B)	Cache hit 0%	0.8 MIOPS
		Cache hit 50%	1.5 MIOPS
		Cache hit 100%	35.0 MIOPS
	Latency	Cache hit/miss	<1us/ 70us
CXL.io	Seq. perf (128KB)	Read: 5,500 MB/s Write: 2,000 MB/s	
	Random Perf (4KB)	Read: 800 KIOPS Write: 85 KIOPS	

Fine-grain Access to Storage Data

DLRM Performance with Fast Small IOs

* Results based on publicly available DLRM workload traces from Meta and FPGA based PoC Memory-Semantic SSD™

** DLRM : Deep Learning Recommendation Model

Movie Recommendation System Demo

SAMSUNG

Challenges and Opportunities

Standard and Eco

No definition and spec

Latency Tolerance

Impact of long latency on CPU performance

23

Cache Management

Managing in-device DRAM is the key!

Key Features & Benefits

- Close to DRAM end-to-end performance at a lower TCO*
- Up to ~10x better end-to-end performance with FPGA-based PoC**

Wrap Up

SSD with CXL interfaces for

- Persistent memory
- Performant secondary memory
- Storage for AI and HPC
- Near data processing platform

Community efforts

- Standard for SSD with CXL interfaces (+cache management)
- Software ecosystem
- CPU architecture to tolerate long latency

Thank You

STORAGE DEVELOPER CONFERENCE

SAMSUNG