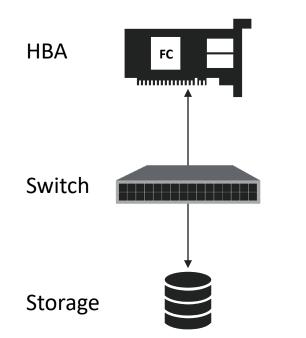
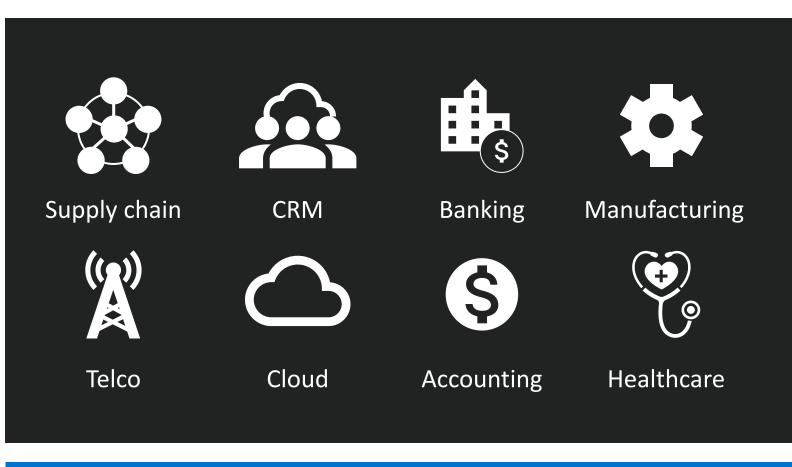
STORAGE DEVELOPER CONFERENCE

Bi Developers i OK Developers


Trucks Keep Right!


Maximizing Efficiency with Fibre Channel Virtual Lanes

Girish Basrur and Nishant Lodha, Marvell

Fibre Channel

Reliable, secure, **block storage connectivity** for business-critical systems

Work on a "Credit"-based mechanism

Virtual Lanes

The technology and its use cases



3 | ©2021 Storage Developer Conference ©. Insert Company Name Here. All Rights Reserved.

Storage 2

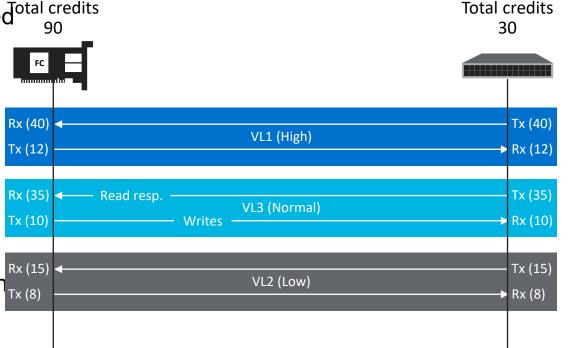
23

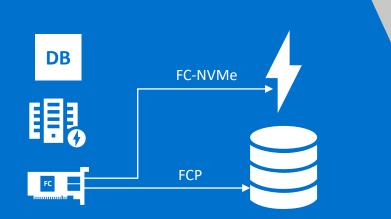
Credit based flow control in Fibre Channel

Server 2

3 lanes

FC Virtual Lanes


- HBA to Switch, typically a one lane highway
- Slow traffic impedes everyone else
- Very difficult to root cause, impacts SLAs
- Marvell Virtual Lane Technology (standards based
 - Three lane highway
 - Slow traffic in slow lane, fewer credits
 - No head of line blocking
 - Dedicated lane from initiator to target
- Many use cases around segregation, QoS, traffic priorities


How do Virtual Lanes work?

- Configure: Physical FC Link (and credits) divided ^{otal credits} ⁹⁰
 ⁹⁰
 - Cisco MDS Virtual Links (VLs)
 - Brocade FC Virtual Channels (VCs)
- Negotiate: HBA ⇔ Switch ⇔ Storage @Login
 - Do you VL?
 - How many?
 - Rx BB_CRs per VL?
 - Tx BB_CRs per VL?
 - Priority Range values per VL?
- Operate: Frames are tagged (CS_CTL for Cisco, Primitives for Brocade) and transmitted on specific VLs
- Availability: Marvell 32G and 64GFC HBAs

Use case: Prioritizing Flash traffic Application I/O spans disk and NVMe storage

Hybrid storage access

Ability to prioritize flash traffic

Situation: DB server transacting with flash for queries and disk for logs

Trigger: HBA driver detects destination media / protocol

Action: Move all NVMe flows to fast VL and HDD flows to slow VL

Result: No head of line blocking of NVMe IOs

Use case: Mapping VM priority

Multiple VMs share the same fabric, map VM priority profile to fabric priorities

Virtualized

Ability to prioritize individual applications

Situation: Virtual Machines sharing the physical storage infrastructure

Trigger: HBA driver receives VM priority along with VM-ID tags

Action: I/Os to high priority VMs mapped to fast and normal VLs

Result: Storage fabric that is aware of administrator set VM priority

Use case: Target congestion Read and write traffic in progress, storage device is congested

Storage congested

Peer Congestion Notification (FPIN PCN) (Target in zone is congested) Situation: Writes to slow target. Target not sinking to media fast enough.

Trigger: Switch sends PCN to FC HBA via Fabric Notifications

Action: Move ALL IOs of this slow flow to a slow VL (isolate it)

Clear: Move flow back to normal/fast VL

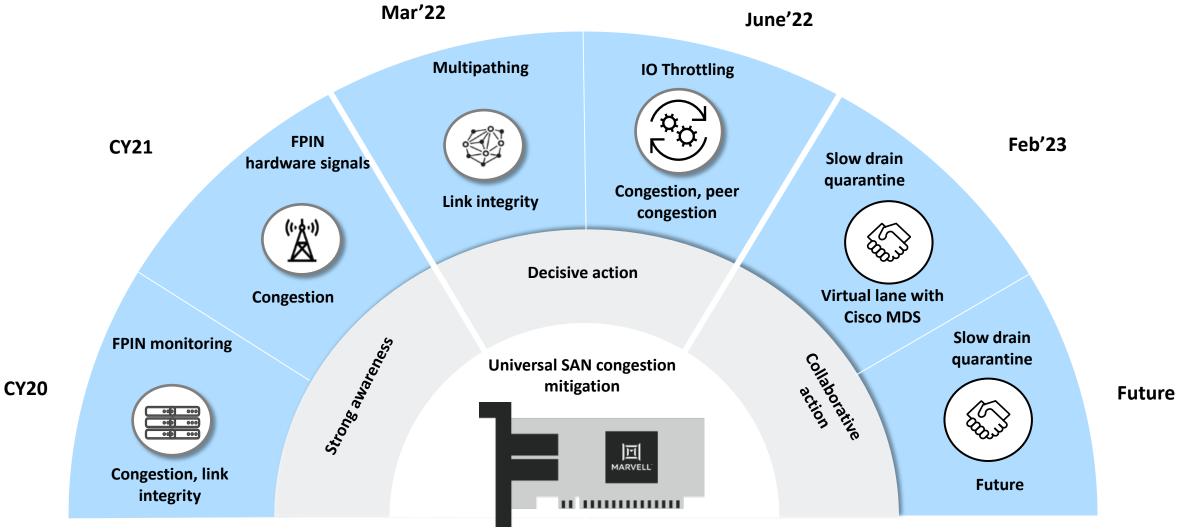
Use case in production using Marvell[®] QLogic[®] FC HBAs and Cisco MDS switches

Mitigating Congestion with VLs A deep dive

10 | ©2021 Storage Developer Conference ©. Insert Company Name Here. All Rights Reserved.

Fabric Notifications – the foundation to Congestion Mitigation!

Types of Notifications


- Link integrity (Potholes)
 - Awareness: Physical layer errors exceed a threshold
 - Decisive Action: Use an alternative path or adjust for the error rate
- Congestion (NB Traffic)
 - Awareness: Fabric has identified the congestion source (it's you)
 - Decisive Action: Reduce the rate of IO requests or quarantine flows
- Peer congestion (SB Traffic)
 - Awareness: Fabric has identified the congestion source (not you)
 - Decisive Action: Use another path or reduce the transfer rate
- Delivery (can't make it)
 - Awareness: Fabric transmit timeout, cannot deliver
 - Decisive Action: Report IO error immediately (short-circuit protocol timeout)

FC Switch mgmt. console

Congestion Mitigation – The Journey

Marvell QLogic self-driving SAN roadmap

Handling target congestion with Virtual Lanes (VLs)

- Under scenarios where target is congested, VL usage can help in two distinct ways
 - Isolation of traffic to the congested target port on a separate slow lane
 - Auto-throttling of traffic to congested target port
 - Handled with lower credits assigned to slow lanes
- Traffic throttling assists in target recovering from transient congestion conditions
 - Lack of resources
 - Temporary credit stalls

Virtual Lanes – not a silver bullet

VL usage may not mitigate following scenarios

- Target is oversubscribed and is in constant state of congestion
 - Inherent I/O throttling in slow lane may not suffice
- VL can cause lane switch back and forth
 - Target congestion is mitigated as long as traffic is on slow lane
 - Switch concludes congestion condition is resolved
 - Host switches back to normal lane, potentially re-triggering congestion condition
 - Exacerbated when multiple initiators implement VL

Best of both worlds...

Hosts use VL as first line of defence in congestion mitigation

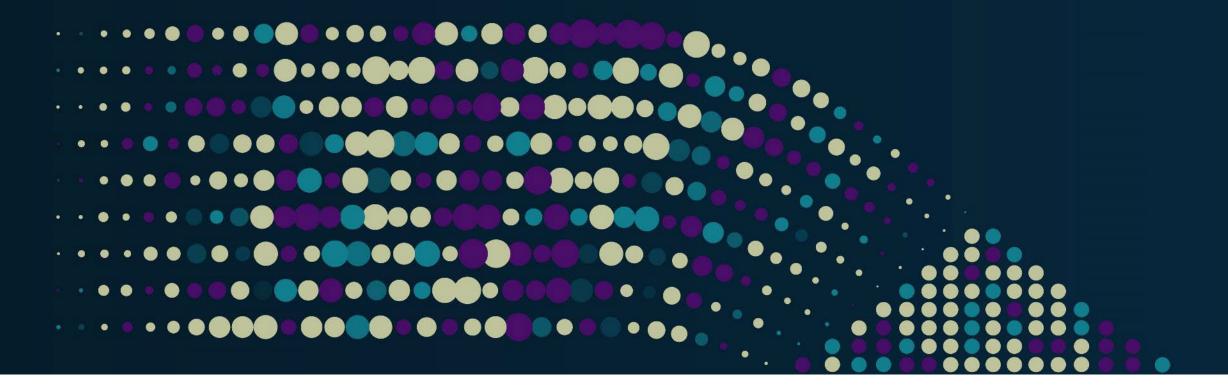
• Will isolate traffic to congested port, leaving other flows undisturbed

Complement VL with other mitigation strategies

- Host based I/O throttling
 - Allows for more intelligent throttling and controlled switch back
- Use of "smart" multipath load balancing policies

Summary and Next Steps

Bring your use cases!


16 | ©2021 Storage Developer Conference ©. Insert Company Name Here. All Rights Reserved.

Virtual Lanes avoid delays

- Congestion issues and lack of a workload aware storage fabric introduces delays
- Virtual lanes enable physical layer priority enforcement for Fibre Channel traffic
- Futures: New use cases, dynamic credit allocation, hypervisor and array integration

Please take a moment to rate this session.

Your feedback is important to us.

18 | ©2023 SNIA. All Rights Reserved.

• • • D ۲ ۲ ۲ • • • • • • • • • • • • ۲ . ۲ • 🕘 • • ۲ • • •

Q&A

19 | ©2023 SNIA. All Rights Reserved.