
1 | ©2023 Micron Technology, Inc. All Rights Reserved.

Virtual Conference
September 28-29, 2021

Understanding Applications
Through NVMe Driver

Tracing Using BPF

John Mazzie
Member of Technical Staff, Systems Performance Engineer

Micron Technology, Inc.

2 | ©2023 Micron Technology, Inc. All Rights Reserved.

Agenda

BPF and the NVMe Driver

Application Analysis: MLPerf™ Storage

3 | ©2021 Storage Developer Conference ©. Insert Company Name Here. All Rights Reserved.

BPF and the NVMe Driver

4 | ©2023 Micron Technology, Inc. All Rights Reserved.

BPF Overview
4

 Originally “Berkeley Packet Filter”
 Developed to analyze network traffic

 Integrated with kernel
 Executes sandbox programs in kernel

 Used to trace, profile and monitor
 Utilizes a just-in-time compiler
 Verification Engine to protect kernel space
 Various features supported in different kernel versions

 Kernel 3.18 – eBPF VM
 Kernel 5.5 – BPF Trampoline support

 BPF stack (Kernel) is limited to 512 bytes
 Use maps to increase memory availability

5 | ©2023 Micron Technology, Inc. All Rights Reserved.

Methods of Tracing Kernel/Drivers
5

 Tracepoints
 Stable interface

 Managed by developers over multiple kernel versions
 Limited to the data provided by tracepoint.

 Kprobes (Kernel Probes – kprobe/kretprobe)
 Can attach/register probe to virtually any instruction.

 Attachment to none kernel methods/functions requires debug kernel.
 Can access data not directly provided.
 Unstable interface

 Kernel Functions are not stable across versions
 BPF Trampoline (kfunc/kretfunc and fentry/fexit)

 Interface is similar to kprobes
 Reduced overhead from kprobes
 Doesn’t cause events to be missed due to interruption
 Requires kernel support (Added in mainline kernel 5.5)

6 | ©2023 Micron Technology, Inc. All Rights Reserved.

Need
6

Original Multiple Tools
 Blktrace

 Used to analyze read/write pattern that was going to the device at the block layer
 Requires post processing to get necessary output

 Nvmelat
 Bpftrace based tool, to give latency histogram of transactions at the driver layer
 Could miss some transactions

New Tool
 Data processing done in line
 Collects data for every transaction

7 | ©2023 Micron Technology, Inc. All Rights Reserved.

Linux Storage Stack
7

Block driver (nvme)

Write/read data

BIOs

Requests

HW IRQ handling

Enqueue
Tasks

Applications

VFS/File System

Block
(Request Q , I/O schedule, plug/un-

plug)

Direct
I/O

Page
cache

Host Bus
Driver

Storage Device

BIOs

Data
Transfer

nvmetrace

blktrace

Dma
mapping

IOMMU

Host RAM

Complete
Tasks

Host Bus
Driver

Dma
unmapping

8 | ©2023 Micron Technology, Inc. All Rights Reserved.

NVMeTrace
8

Collections information on every transaction in the nvme driver.
 Starting LBA
 Transaction Size/Length
 Start Time/Completion Time/Latency
 Process ID/Name
 Device
 Queue ID
 Transaction Type

 Read, write, flush, admin…

Developed using libbpf
Kernel version specific (sometimes)

9 | ©2023 Micron Technology, Inc. All Rights Reserved.

Why Libbpf?
9

 Bpftrace
 High level scripting language
 Helpful to build tools quickly
 Built on bcc and libbpf
 Limited control over implementation

 Libbpf
 More difficult entry point
 More detailed control over implementation

 Kernel space handlers
 User space processing and output

 CO-RE (Compile Once – Run Everywhere)
 Can be done, might be difficult to implement depending on tool requirements

10 | ©2023 Micron Technology, Inc. All Rights Reserved.

Code Flow
10

 Kernel Space
 Memory Maps

 Store data in program while it’s being processed.
 Use Per CPU memory maps to avoid locking of map.

 Ring Buffer
 Used to transfer processed data to user space.

 Three handlers tracing functions in the NVMe driver
 nvme_setup_discard

 Handles parsing multiple discards sent as single DSM command
 nvme_submit_cmd

 Handles submission of transactions to the NVMe device queue
 Collect information about the transaction and store in a memory map

 nvme_complete_rq
 Handles completion of transactions, called when interrupt is activated.
 Get completion time of transaction
 Calculate latency
 Put processed data on ring buffer

 User Space
 Loads BPF application
 Verification is done by the JIT compiler/BPF VM
 Handles data passed through from kernel space

11 | ©2023 Micron Technology, Inc. All Rights Reserved.

Request/Command Structure
11

 Request
 Structure containing data from block layer provided to NVMe Driver

 nvme_iod
 Structure containg Nvme I/O data.
 Exists immediately after request in memory
 Contains nvme_request, nvme_command, nvme_queue

 Pointers for all structures are not passed into each traced function
 Limits direct access and reusability of code across kernel versions
 Tool needs access to request and nvme_command in all functions

 Getting data from nvme_iod and request requires moving around memory
 Jumping between structures in memory requires knowledge of the specific structures

 Size, members, relative memory locations
 Function interfaces and structures are not stable across kernel version

 Kernel versions could require recompile, or even rewrite of handler logic

12 | ©2023 Micron Technology, Inc. All Rights Reserved.

nvme_setup_discard Handler
12

 Loops in BPF are hard
 Must have a defined end
 JIT compiler does a basic check
 Loop helper exists in newer

kernel versions – bpf_loop

 Discards are sent through Data
Set Management (DSM)
command
 Up to 256 discards per DSM

command
 Need to loop through individual

 SEC("fentry/nvme_setup_discard")
int BPF_PROG(do_nvme_setup_discard, struct nvme_ns *ns, struct request *req, struct nvme_command *cmnd)
{
 int temp_index;
 struct bio *_bio = BPF_CORE_READ(req, bio);

 // max ranges = 256 for discard DSM command.
 for (int index = 0; index < 256; index++) {
 // Can't use index directly because verifier thinks it can be changed when used in bpf_map_lookup_elem
 temp_index = index;
 struct discard_data *temp_discard_data = bpf_map_lookup_elem(&discard_heap, &temp_index);
 if (temp_discard_data) {
 if (_bio == NULL) {
 temp_discard_data->slba = 0;
 temp_discard_data->length_bytes = 0;
 temp_discard_data->length_lbas = 0;
 break;
 }
 temp_discard_data->slba = BPF_CORE_READ(_bio, bi_iter.bi_sector) >> (BPF_CORE_READ(ns, lba_shift) - 9);
 temp_discard_data->length_bytes = BPF_CORE_READ(_bio, bi_iter.bi_size);
 temp_discard_data->length_lbas = temp_discard_data->length_bytes >> BPF_CORE_READ(ns, lba_shift);
 _bio = BPF_CORE_READ(_bio, bi_next);
 } else {
 break;
 }
 }
 return 0;
}

13 | ©2023 Micron Technology, Inc. All Rights Reserved.

nvme_submit_cmd Handler
13

 Generate pointers to
necessary memory locations
for structures
 Check if memory is available

on the heap
 Start collecting available data

for the event
 Check if it’s a non-admin

command
 Length = 1 (No device name)

 Stores collected information
in event_map for use in
nvme_complete_rq handler

 SEC("fentry/nvme_submit_cmd")
int BPF_PROG(do_nvme_submit_cmd, struct nvme_queue *nvmeq, struct nvme_command *cmd, bool write_sq)
{
 struct nvme_iod *iod = container_of(cmd, struct nvme_iod, cmd);
 struct request *req = blk_mq_rq_from_pdu(iod);
 __u64 req_address = (__u64)req;
 int index = 0;

 struct event *temp_event = bpf_map_lookup_elem(&heap, &index);

 if (temp_event) {
 int length;

 temp_event->qid = BPF_CORE_READ(nvmeq, qid);
 temp_event->pid = bpf_get_current_pid_tgid() >> 32;
 bpf_get_current_comm(temp_event->process_name, sizeof(temp_event->process_name));
 temp_event->opcode = BPF_CORE_READ(cmd, common.opcode);

 length = bpf_probe_read_str(temp_event->device_name, sizeof(temp_event->device_name), BPF_CORE_READ(req, rq_disk, disk_name));
 if (length > 1) {
 if (temp_event->opcode == nvme_cmd_read || temp_event->opcode == nvme_cmd_write) {
 __u32 size = 511;

 temp_event->slba = BPF_CORE_READ(cmd, rw.slba);
 temp_event->length_bytes = BPF_CORE_READ(req, __data_len);
 temp_event->length_lbas = BPF_CORE_READ(cmd, rw.length) + 1;

 } else if (temp_event->opcode == nvme_cmd_dsm) {
 // slba, length_bytes, and length_lbas get handled with nvme_setup_discard
 // Setting to 0 until set at completion
 temp_event->slba = 0;
 temp_event->length_bytes = 0;
 temp_event->length_lbas = 0;
 } else {
 temp_event->slba = 0;
 temp_event->length_bytes = 0;
 temp_event->length_lbas = 0;
 }
 } else { //Admin Command
 temp_event->slba = 0;
 temp_event->length_bytes = 0;
 temp_event->length_lbas = 0;
 }

 temp_event->start_time_ns = bpf_ktime_get_ns();
 bpf_map_update_elem(&event_map, &req_address, temp_event, BPF_ANY);
 }
 return 0;

14 | ©2023 Micron Technology, Inc. All Rights Reserved.

nvme_complete_rq Handler
14

Gets matching information
from request in event_map
Reserves space on the ring

buffer
Calculates latency
Writes all collected data to

ring buffer for user space
processing.

SEC("fentry/nvme_complete_rq")
int BPF_PROG(do_nvme_complete_rq, struct request *req)
{
 __u64 req_address = (__u64)req;
 struct event *info = bpf_map_lookup_elem(&event_map, &req_address);

 if (info) {

 struct event *e;
 e = bpf_ringbuf_reserve(&ring_buffer, sizeof(*e), 0); //This is allocating too slow
 if (!e) {
 bpf_printk("BUFFER FULL!\n");
 return 0;
 }

 e->start_time_ns = info->start_time_ns;
 e->end_time_ns = bpf_ktime_get_ns();
 e->latency_ns = e->end_time_ns - e->start_time_ns;
 e->qid = info->qid;
 e->pid = info->pid;
 bpf_probe_read_str(e->process_name, sizeof(e->process_name), info->process_name);
 bpf_probe_read_str(e->device_name, sizeof(e->device_name), info->device_name);
 e->opcode = info->opcode;
 e->slba = info->slba;
 e->length = info->length;

 bpf_map_delete_elem(&event_map, &req_address);

 bpf_ringbuf_submit(e, 0);
 }
 return 0;
}

15 | ©2023 Micron Technology, Inc. All Rights Reserved.

Example Output
15

start_time_ns,end_time_ns,latency_ns,process_name,pid,device,qid,slba,length_bytes,length_lbas,opcode
945661828630244,945661828679823,49579,systemd-udevd,823,nvme2n1,18,0,4096,8,2
945661828720722,945661828744932,24210,systemd-udevd,823,nvme2n1,18,8,4096,8,2
945661828762102,945661828780561,18459,systemd-udevd,823,nvme2n1,18,24,4096,8,2
945661833805074,945661833822884,17810,systemd-udevd,823,nvme2n1,18,0,4096,8,2
945661833841224,945661833856614,15390,systemd-udevd,823,nvme2n1,18,8,4096,8,2
945661833869263,945661833884423,15160,systemd-udevd,823,nvme2n1,18,24,4096,8,2
945661838342307,945661838359766,17459,systemd-udevd,823,nvme2n1,18,0,4096,8,2
945661838394956,945661838431165,36209,systemd-udevd,823,nvme2n1,41,8,4096,8,2
945661838451645,945661838466984,15339,systemd-udevd,823,nvme2n1,41,24,4096,8,2
945661839510777,945661839552986,42209,systemd-udevd,55562,nvme2n1,31,30005842432,4096,8,2
945661839579855,945661839596465,16610,systemd-udevd,55562,nvme2n1,31,30005842592,4096,8,2
945661839609995,945661839625125,15130,systemd-udevd,55562,nvme2n1,31,0,4096,8,2

16 | ©2023 Micron Technology, Inc. All Rights Reserved.

BPF Helpers
16

 bpf_ktime_get_ns()
 Get current kernel timestamp

 bpf_get_current_comm()
 Gets process name of process that triggered event being traced

 bpf_get_current_pid_tgit()
 Gets PID of process that triggered event being traced

 BPF_CORE_READ()
 Reads memory space of structures
 Can read arbitrarily deep through structures with pointers.

 bpf_probe_read_kernel()
 bpf_core_read
 Read arbitrary memory location

 bpf_probe_read_str()
 bpf_core_read_str
 Reads string value and stores it in another point in memory

17 | ©2023 Micron Technology, Inc. All Rights Reserved.

BPF CO-RE
17

https://nakryiko.com/posts/bpf-core-reference-guide/

 CO-RE
 Compile Once – Run Everywhere

 Compile once and execute on multiple kernel versions

 Helper functions and methodology that help develop portable applications
 BTF
 BPF Type Format
 Debug information to describe all kernel/driver type information
 Used by BPF Verifier

 Finds matching structures and gets offsets for structure members
 Enables ability to not have to fully define a structure to access a member of that structure

 Build Kernel with CONFIG_DEBUG_INFO_BTF=y

18 | ©2021 Storage Developer Conference ©. Insert Company Name Here. All Rights Reserved.

Application Analysis
MLPerf™ Storage

19 | ©2023 Micron Technology, Inc. All Rights Reserved.

 How do we size storage
for AI training?
 MLCommons produces many AI

workload benchmarks
 Training, Inference, Tiny, HPC,

etc
 Training benchmark has been scaled

to nearly 4 thousand accelerators
 The performance of storage has

been optimized out of the Training
benchmark

 Can’t be used for measuring storage
workload

 Options:
 De-optimize the training process
 Develop a new process

 De-optimizing
 Limit memory to the system to prevent filesystem caching
 Some datasets are very small, and it is impossible to find a

memory capacity that allows the models to train properly
without caching the entire dataset

 Develop a new process
 Must do IO in the same way as the real AI training process
 Must reduce hardware requirements for testing

 (few storage vendors have hundreds of GPU systems for load
testing)

 Must provide larger datasets to limit effect of filesystem
caching

MLPerf™

20 | ©2023 Micron Technology, Inc. All Rights Reserved.

 Using the tool DLIO from Argonne
Leadership Computing Facility
(ALCF)
 Uses the same data loaders as the real workload

(pytorch, tensorflow, etc) to move data from storage to
CPU memory

 Implements a sleep in the execution loop for each batch
 Sleep time is computed from running the real

workload
 A sleep time and batch size effectively defines an

accelerator
 How much data per batch and how long to spend on

forward & backward passes
 Scale up/out testing performed by adding clients running

DLIO and using MPIO for multiple emulated accelerators
per client

MLPerf™ Storage
 Defines a set of configurations to represent results

submitted to MLPerf™ Training
 Version 0.5:

 BERT & Unet3D (NLP and 3D medial imaging)
 Allows scale out and scale up testing without requiring

GPUs
 Reported metrics are:

 Samples per Second
 Number of supported accelerators

 Requires maintaining a minimum Accelerator Utilization
for a passed test

 Still in early development
 Get involved!

 https://mlcommons.org/en/groups/research-storage/

MLPerf™ Storage Benchmark

https://mlcommons.org/en/groups/research-storage/

21 | ©2023 Micron Technology, Inc. All Rights Reserved.

Unet3D
I/O throughput versus time

 For a single Accelerator (top plot)
 Data transferred in 1 second

intervals ranges from 0 to 600 MB
with peaks to 1,600 MB

 The peaks correspond to the start
of an epoch where the prefetch
buffer is filled before starting
compute

 For 15 accelerators (bottom plot)
 Near the drive’s limit (17

accelerators)
 Workload continues to have bursty

behavior with some 1 second
intervals showing 0 MB
transferred

 While the system does hit the maximum
throughput of the device, the low QD
and idle times result in an average
throughput that is 15 – 20% less than
max supported
 Traditional tools will not show the

peak throughput as measured
here

1 ACC

15 ACC

22 | ©2023 Micron Technology, Inc. All Rights Reserved.

Unet3D
Queue depth versus time

 1 accelerator (top
plot):
 Over time, queue depth

remains low (less than 10)
 After initial ramp, QD remains

constant even during epoch
starts which showed higher
MB per second

 15 accelerators
(bottom plot):
 Queue depth peaks at 145

early then stabilized at 120
and below

 This heavily loaded system
still has low Queue Depth
operations

1 ACC

15 ACC

23 | ©2023 Micron Technology, Inc. All Rights Reserved.

Unet3D
Percent of I/Os by queue depth for 1 accelerator

 For 1 accelerator:
 Less than 1% of IOs are at Queue

Depths 2-5
 Nearly 50% of IOs were inserted as

the only IO in the queue
 Nearly 50% were inserted as the

second IO in the queue (QD1)

 Note: The specific transfer size is
dependent on the device, block
settings, and filesystem settings
but we consistently see the max
available size (512KB – 1280KB)

24 | ©2023 Micron Technology, Inc. All Rights Reserved.

Unet3D
Percent of I/Os by queue depth for 15 accelerator

 For 15 accelerators:
 We see a distribution of Queue

Depths
 The bump at low QDs is

important
 A not-insignificant number of IOs

are inserted at very low Queue
Depths (less than 5)
 This behavior introduces idle

time in workloads that were
expected to be constantly high
throughput

25 | ©2023 SNIA. All Rights Reserved.

How device settings can affect I/O pattern

Maximum Data Transfer Size – MDTS
 Controller Setting
 Sets maximum transfer size drive will accept

 /sys/block/nvmeXnY/queue/max_hw_sectors_kb (Value in KiB)
 Can be adjusted down

 “echo <value_kb> > /sys/block/nvmeXnY/queue/max_sectors_kb”
 max_sectors_kb – Working limit on OS

Namespace Optimal Write Size – NOWS
 Namespace setting – Cannot be adjust in OS
 Hint for applications & file systems – not enforced by drive

26 | ©2023 Micron Technology, Inc. All Rights Reserved.

Unet3D
I/O Blocksize Pattern 16 Accelerators – XFS Filesystem

MDTS: 4MiB / NOWS: 4KiB MDTS: 4MiB / NOWS: 256KiB MDTS: 512KiB / NOWS: 256KiB

27 | ©2023 Micron Technology, Inc. All Rights Reserved.

Future Improvements
27

 Trace of files accessed
 Trace application processes
Analysis Improvements

28 | ©2023 Micron Technology, Inc. All Rights Reserved.

Please take a moment to rate this session.
Your feedback is important to us.

29 | ©2023 Micron Technology, Inc. All Rights Reserved.

Reference Links

 libbpf - https://github.com/libbpf/libbpf
 libbpf-bootstrap - https://github.com/libbpf/libbpf-bootstrap
BPF Performance Tools (Brendan Gregg) -

https://www.brendangregg.com/bpf-performance-tools-book.html
MLPerf™ Storage - https://mlcommons.org/en/groups/research-storage/

https://github.com/libbpf/libbpf
https://github.com/libbpf/libbpf-bootstrap
https://www.brendangregg.com/bpf-performance-tools-book.html
https://mlcommons.org/en/groups/research-storage/

	Understanding Applications Through NVMe Driver Tracing Using BPF
	Agenda
	BPF and the NVMe Driver
	BPF Overview
	Methods of Tracing Kernel/Drivers
	Need
	Linux Storage Stack
	NVMeTrace
	Why Libbpf?
	Code Flow
	Request/Command Structure
	nvme_setup_discard Handler
	nvme_submit_cmd Handler
	nvme_complete_rq Handler
	Example Output
	BPF Helpers
	BPF CO-RE
	Application Analysis
	MLPerf™
	MLPerf™ Storage Benchmark
	Unet3D�I/O throughput versus time
	Unet3D�Queue depth versus time
	Unet3D�Percent of I/Os by queue depth for 1 accelerator
	Unet3D�Percent of I/Os by queue depth for 15 accelerator
	How device settings can affect I/O pattern
	Unet3D�I/O Blocksize Pattern 16 Accelerators – XFS Filesystem
	Future Improvements
	Please take a moment to rate this session.
	Reference Links

