
1 | © 2023 SNIA & Leil Storage OÜ copyright

Virtual Conference
September 28-29, 2021

Bridging the Gap Between
Host Managed SMR Drives

and Software-Defined Storage

Presented by
Piotr Modrzyk

2 | © 2023 SNIA & Leil Storage OÜ copyright

Speaker

Piotr
Modrzyk
Principal Architect at Leil Storage

X-googler and Creator of LizardFS

3 | © 2023 SNIA & Leil Storage OÜ copyright

Outline
 Brief intro to SaunaFS

— Simplified SaunaFS architecture
— Chunks

 SMR restrictions
— Problems for conventional Chunks

 Solution
— Divide the Chunks into Metadata and Data
— Handle non-sequential writes: fragment the chunks & garbage collection

 SMR libraries overview and why ZoneFS
 Testing framework extension for zoned devices
 Inspecting the content of zones with a graphical UI tool

4 | © 2023 SNIA & Leil Storage OÜ copyright

Brief intro to SaunaFS
 SaunaFS is a Distributed File System written mostly

in C++ which implements concepts introduced by
Google File System.

 SaunaFS is divided into:
— Metadata Servers (master, shadows and metaloggers)
— Data Servers (chunkservers)
— Clients (native Linux/Windows, NFS)

 In the Chunkserver side:
— Files are divided into Chunks (up to 64 MiB)

(chunks are logically divided into Blocks of 64 KiB,

which is the minimum block size)

For each block, 4 bytes of CRC are also stored in the Chunk metadata. See https://en.wikipedia.org/wiki/Google_File_System

https://en.wikipedia.org/wiki/Google_File_System

5 | © 2023 SNIA & Leil Storage OÜ copyright

Simplified writing process
The client wants to create a file and to write data to this file:

 The client asks the Master server where
(Chunkservers) to put the first chunk.

 The client connects directly
to the Chunkservers and starts sending
the data in Blocks of 64 KiB + 4 B of CRC.

 The Chunkservers check the Block’s CRC
against the received data and write to the
storage devices, metadata is updated if
needed.

6 | © 2023 SNIA & Leil Storage OÜ copyright

EC4+2 file with 2 Chunks Example

 File_01_100_MiB_goal_ec42.dat
· The Chunks will be divided into 4 data parts containing

up to 16 MiB of data = 4 x 16 + 4 x 9MiB = 100MiB of DATA:

16
MiB

9
MiB

64MiB + 36MiB

· Two PARITY for every 4 pieces of data, with same size will be created:

16
MiB

9
MiB

Server
01

Server
04

Server
06

Server
05

16
MiB

16
MiB

16
MiB

9
MiB

9
MiB

9
MiB

16
MiB

9
MiB

Server
02

Server
03

7 | © 2023 SNIA & Leil Storage OÜ copyright

SMR restrictions

 The Sequential Zones can only be appended at the write head.

Conventional
Zones

Sequential write
Zones

 The IO operations must be aligned to the device IO block size

(usually 4KiB).

The client wants to create a file and to write data to this file:

8 | © 2023 SNIA & Leil Storage OÜ copyright

Conventional chunks

 Header 1 KiB
· Id, version, type.

Header CRC Data

 CRC
· Up to 1024 Blocks of 4B.

 Data
· Up to 1024 Blocks of 64 KiB.

9 | © 2023 SNIA & Leil Storage OÜ copyright

Problems for Conventional Chunks

 CRC must be updated with each Block write, which implies non-sequential writes to the Zone.

 Header + CRC = 5 KiB, which is not aligned to the 4 KiB IO block size of many SMRs.

 The Zone write head is always moved by 64 KiB, which only works for write block
sizes multiple of 64 KiB.

10 | © 2023 SNIA & Leil Storage OÜ copyright

Solution: Divide Chunks into Metadata & Data

Conventional Disk (NVMe)

SMR Disk

Split the Chunks into Metadata and Data.

11 | © 2023 SNIA & Leil Storage OÜ copyright

Solution: Divide Chunks into Metadata & Data
Conventional Disk (NVMe)

SMR Disk

 The metadata is now in another (NVMe) disk, which eliminates the problem of writing the CRC in Sequential Zones.

 Data can be aligned now into the Zones with 64 KiB Blocks.

 The Zone Write Head is always moved by 64 KiB, which only works for write block sizes multiple of 64 KiB.

12 | © 2023 SNIA & Leil Storage OÜ copyright

Solution: Handle Non-Sequential Writes

Header CRC Data

Introduce Chunk fragmentation.

 The Header is modified to contain information about the Fragments:
· Id, version, type, number of fragments, list of fragments.

 Metadata about the Fragments contain 12Bytes each:
· Zone(4B), offsetInZone(4B), first block(2B), number of Blocks(2B).

 New Fragments of same chunk are preferred to be stored in the same Zone if possible.

 A Chunk with more than one Fragment is considered fragmented.

13 | © 2023 SNIA & Leil Storage OÜ copyright

Solution: Handle Non-Sequential Writes

Example of non-sequential write into the Zones:

 Create a file and write 32 KiB.

 A new Chunk is created with 1 Fragment containing 1 Block of 64 KiB, but only 32 KiB belongs to the file.

32 KiB

Zone

Fragment

Zone Write HeadChunk Write Head

 The next bytes to write will trigger a non-sequential write into the Zone.

14 | © 2023 SNIA & Leil Storage OÜ copyright

Solution: Handle Non-Sequential Writes

If the Fragment contains only one block, we can reuse the Fragment and update the
location (same or different Zone).

64 KiB /Fragment

Zone
Chunk Write Head

A hole of unreferenced written data
is created. So the Zone is marked as Dirty Zone Write Head

Note: the Chunk is still not fragmented.

15 | © 2023 SNIA & Leil Storage OÜ copyright

Solution: Handle Non-Sequential Writes
If the Fragment contains more than one block, we need to create a new Fragment,

preferably in the same Zone.

A hole of unreferenced written data is created, and the Zone is marked as Dirty. The Chunk is now considered fragmented.

64 KiB

Zone

Fragment

Zone Write HeadChunk Write Head

32 KiB

64 KiB

Zone

64 KiB

/Fragment 0 /Fragment 1

Zone Write Head
Chunk Write Head

16 | © 2023 SNIA & Leil Storage OÜ copyright

Solution: Handle Random Writes

Random write:

fio --name=fiotest_rand_write_QD5 --directory=/mnt/saunafs --size=1G

--rw=randwrite --numjobs=1 --ioengine=libaio --group_reporting --bs=8M

17 | © 2023 SNIA & Leil Storage OÜ copyright

Solution: Handle Random Writes

64 KiB

ChunkFirst write
Block 01

Random write:

64 KiB

ZoneFirst write
Block 01

18 | © 2023 SNIA & Leil Storage OÜ copyright

Solution: Handle Random Writes

64 KiB

ChunkFirst write
Block 01

Random write:

64 KiB

Second write
Block 03

64 KiB

Zone

Virtual Block

64 KiB

Notice the incorrect order of the blocks
in the zone.
The order will be fixed during
defragmentation.

First write
Block 01

Second write
Block 03

19 | © 2023 SNIA & Leil Storage OÜ copyright

Solution: Handle Random Writes

64 KiB

ChunkFirst write
Block 01

Random write:

64 KiB

Second write
Block 03

64 KiB

Zone

Virtual Block

64 KiB

Notice the incorrect order of the blocks
in the zone.
The order will be fixed during
defragmentation.

First write
Block 01

Second write
Block 03

64 KiB

Third write
Block 02

64 KiB

Third write
Block 02

20 | © 2023 SNIA & Leil Storage OÜ copyright

Solution: Handle Random Writes

Random write:

 Since we have Virtual Blocks now, defragmentation should be fragment-based instead of
the block-based.
This way, we can avoid creating unnecessary Blocks full of zeroes each time we would
need to deal with virtual block (full of nulls).

 Chunk testing can still be per block, Virtual Blocks will return zeros.

21 | © 2023 SNIA & Leil Storage OÜ copyright

Solution: Garbage Collection

Garbage collection is divided into:

 Defragment the Chunks.

 Reset unreferenced Dirty Zones.

22 | © 2023 SNIA & Leil Storage OÜ copyright

Solution: Chunks Defragmentation in chunk-test thread

Defragment the Chunks by extending our test-chunk thread, with defragmentation task.

64 KiB

Zone X

64 KiB
/Fragment 0 /Fragment 1

Zone Y

64 KiB 64 KiB
/Fragment

Zone X

The Zone X can be reset now, because it does not contain any valid data.

23 | © 2023 SNIA & Leil Storage OÜ copyright

Garbage Collection Algorithm Review

Issues with GC during chunk-test thread algorithm:

 Depending on the speed of the Chunk Testing Thread, which can be testing

millions of Chunks (and most of them may not be fragmented).

 The Zones are only reset if no more Chunks are referencing them, and the

random nature of the chunk-test thread is selecting chunks from different

(random) zones.

24 | © 2023 SNIA & Leil Storage OÜ copyright

New Garbage Collection Algorithm is needed

Goals for the new approach:

 Control the speed of the cleaning process.

 Prioritize the defragmentation of Chunks belonging to the same Zone, to

maximize the Zone resets (faster reclaiming of the unreferenced space).

 Reduce the number of Dirty Zones.

25 | © 2023 SNIA & Leil Storage OÜ copyright

Available SMR libraries/tools

libzbc libzbd ZoneFS
Provides functions for manipulating
ZBC and ZAC disks directly.

Provides functions for manipulating
zoned block devices (uses the kernel-
provided ZBD interface that is based
on the ioctl() system calls).

Exposes the zones as files
(from kernel 5.6.0).

Uses mkzonefs to format the drive and
then mount -t zonefs.

Provides aggregation for conventional
zones, file ownership and file access
permissions.

Contains an emulation mode
to mimic HM zoned devices.

No (but null_blk can be used). No (but null_blk can be used).

Graphical Interface: gzbc. Graphical Interface: gzbd. No (gzbc and gzbd works).

26 | © 2023 SNIA & Leil Storage OÜ copyright

SMR libraries overview
Based on illustration from: https://zonedstorage.io/docs/getting-started

http://sohttps:/zonedstorage.io/docs/getting-started

27 | © 2023 SNIA & Leil Storage OÜ copyright

ZoneFS usage

 At Chunkserver start-up.
· Fill a ZoneFSDisk class which contains all the Zones.

The minimal information about the Zones are number, type, and writeHead.

 Every time a Zone is modified, some extra in-memory information is updated:
· isDirty: the boolean attribute returns true if the Zone contains written data not referenced by any Chunk Fragment.

· blocks: number of Blocks referenced by Chunks.

· The next Zone to be chosen is also updated.

28 | © 2023 SNIA & Leil Storage OÜ copyright

Why ZoneFS?

BUILT-IN IN MAINSTREAM

KERNELS

NO NEW DEPENDENCIES
FOR THE PROJECT

ALLOWS USAGE
OF FAMILIAR FILE IO
MODEL

like ZBC or ZBD.

which means less
modifications to the current
Chunkserver code.

WE HAVE FILE DESCRIPTORS
EVERYWHERE.

29 | © 2023 SNIA & Leil Storage OÜ copyright

ZoneFS usage

 The first element of a std::set will be the next Zone.

How to select the next Zone to write:

 Dirty Zones are penalised to be chosen as last resource.
 Available space is the next field used to decide.

 Zones with more available space are preferred.

SaunaFS tries to append new fragments into the same Zone, in order to:

 Avoid increasing Dirty Zones during Chunk defragmentation.

 Reduce the Zones to be open and close at reading or writing.

30 | © 2023 SNIA & Leil Storage OÜ copyright

ZoneFS usage

Sequential Zones can only be written if opened with

O_DIRECT flag

O_DIRECT flag also implies that in-memory buffers for pread or pwrite must be properly aligned

with the device IO block size (memalign family of functions).

31 | © 2023 SNIA & Leil Storage OÜ copyright

Testing framework

 SaunaFS contains a strong testing framework base on Google Test and bash.

 The tests run in a kind of sandbox inside /tmp and all the data is removed after each test execution.

 The data for conventional disks is stored in a RAM disk or in loop devices (always mounted).

The testing framework is able to:

 Create and run on demand the needed master, shadows, metaloggers, mounts, chunkservers and
other tools implemented specifically for tests (file-generate, file-validate, etc).

 Stop, restart and start them at any moment and wait for them to be ready.

 Automatic clean-up after each test execution.

32 | © 2023 SNIA & Leil Storage OÜ copyright

SMR driven modifications to our test framework

 The null_blk driver was selected to emulate the zoned devices.

 The emulated drives are created on demand and destroyed after each test execution.
 The testing framework was extended to accept the number of Conventional and Sequential Zones,

the block size, and the zone size.

CHUNKSERVERS=2 \

→ DISK_PER_CHUNKSERVER=2 \

→ MOUNT_EXTRA_CONFIG="mfscachemode=NEVER" \

→ USE_ZONED_DISKS=YES \

→ setup_local_empty_saunafs info

Creates 2 Chunk servers with 2 emulated SMR
drives each one.

33 | © 2023 SNIA & Leil Storage OÜ copyright

SMR driven modifications to our test framework
Besides the 300+ of standard tests, we have 86 SMR integration tests related to:

 Write, read and overwrite sequential and random data in parallel.
 Multiple chunk truncation.
 Concurrent RW to the same zone.
 Sparse chunks.
 Snapshots.
 File descriptors leak check.
 Disk failures during write and read.
 Valgrind.
 CRC errors detection and fixing.
 Chunk versioning.

34 | © 2023 SNIA & Leil Storage OÜ copyright

Graphical user interface (GUI)

 libzbc and libzbd provide a simple GUI which allows to visually represent the used space in
Sequential Zones (based on the write head).

 The used space in conventional zones is not represented because the write head for this
type of zone is always the zone size.

 We have crated our own GUI to highlight the data inside of the zones belonging to different
chunks and to visualise our logical write heads for conventional zones.

35 | © 2023 SNIA & Leil Storage OÜ copyright

Graphical user interface (GUI)
For simplicity, let’s use a null_blk
emulated drive with:

 Zone size: 256 MiB
 Conventional Zones: 1
 Sequential Zones: 2
 Usable size: 512 MiB

SaunaFS monitoring

gzbc

36 | © 2023 SNIA & Leil Storage OÜ copyright

Graphical user interface (GUI)
Write 16 MiB:

 The data is written to the Sequential
Zone 1 (represented in red).

SaunaFS monitoring

gzbc

fio --name=file01 --
directory=/mnt/saunafs --
size=16M --rw=write --bs=64K

37 | © 2023 SNIA & Leil Storage OÜ copyright

Graphical user interface (GUI)
Overwrite the file (16 MiB):

 To deal with the sequential write
constraint, the chunk is
automatically fragmented.

SaunaFS monitoring

gzbc

fio --name=file01 --
directory=/mnt/saunafs --
size=16M --rw=write --
bs=64K --bs=64K overwrite=1

 The same zone is preferred.

 An overhead of used space is created
(16 MiB extra).

38 | © 2023 SNIA & Leil Storage OÜ copyright

Graphical user interface (GUI)
Garbage collection:

 The chunk is defragmented to
another zone using the original size.

SaunaFS monitoring

gzbc

 The previous zone is marked as dirty.

 As there are no chunks now
referencing the previous zone, it can
be reset.

39 | © 2023 SNIA & Leil Storage OÜ copyright

Graphical user interface (GUI)
Garbage collection:

 Overwrite the files to generate
unreferenced space in the Zones.

 SaunaFS graphical tool represents
the holes in black color.

 Each different color is a Chunk.
 Free space in the Zone is green.

40 | © 2023 SNIA & Leil Storage OÜ copyright

Graphical user interface (GUI)
Garbage collection:

 All chunks in zones are
defragmented.

 All dirty (black) space is reclaimed.
 MINIMUM ONE ZONE IS EMPTY.

41 | © 2023 SNIA & Leil Storage OÜ copyright

Graphical user interface (GUI)
Garbage collection – with 8MiB chunks:

 All chunks in zones are
defragmented.

 All dirty (black) space is reclaimed.

42 | © 2023 SNIA & Leil Storage OÜ copyright

Thank you!
Your feedback is important to us.

Piotr Modrzyk
Principal Architect

pm@leil.io

mailto:pm@leil.io

	Bridging the Gap Between �Host Managed SMR Drives �and Software-Defined Storage
	Speaker
	Outline
	Brief intro to SaunaFS
	Simplified writing process
	EC4+2 file with 2 Chunks Example
	SMR restrictions
	Conventional chunks
	Problems for Conventional Chunks
	Solution: Divide Chunks into Metadata & Data
	Solution: Divide Chunks into Metadata & Data
	Solution: Handle Non-Sequential Writes
	Solution: Handle Non-Sequential Writes
	Solution: Handle Non-Sequential Writes
	Solution: Handle Non-Sequential Writes
	Solution: Handle Random Writes
	Solution: Handle Random Writes
	Solution: Handle Random Writes
	Solution: Handle Random Writes
	Solution: Handle Random Writes
	Solution: Garbage Collection
	Solution: Chunks Defragmentation in chunk-test thread
	Garbage Collection Algorithm Review
	New Garbage Collection Algorithm is needed
	Available SMR libraries/tools
	SMR libraries overview
	ZoneFS usage
	Why ZoneFS?
	ZoneFS usage
	ZoneFS usage
	Testing framework
	SMR driven modifications to our test framework
	SMR driven modifications to our test framework
	Graphical user interface (GUI)
	Graphical user interface (GUI)
	Graphical user interface (GUI)
	Graphical user interface (GUI)
	Graphical user interface (GUI)
	Graphical user interface (GUI)
	Graphical user interface (GUI)
	Graphical user interface (GUI)
	Thank you!

