STORAGE DEVELOPER CONFERENCE

BY Developers FOR Developers

In-SRAM Computing For Lower Power LLMs

GSI Technology

George Williams, Head of Embedded AI

Generative AI In The News

Programmers, beware: ChatGPT has ruined your magic trick

F Generative AI Drugs Are Coming

It Was The Best Of Times, It Was The Worst Times...

Generative AI Impact

Mckinsey Co, 2023

It Was The Best Of Times...

Energy Costs of Advanced Computing

https://www.nnlabs.org/power-requirements-of-large-language-models

Application	Energy Consumption	Energy Consumption (log kWh)
GPT-2	28,000 kWh	Bitcoin
GPT-3	284,000 kWh	26.1%
BERT	1,536 kWh	GPT-3 17.6%
ResNet-50	1,500 kWh	
Data Center	4,500 tons CO2	Data Center BERT 21.5% 10.3%
Bitcoin	121.36 TWh/year	ResNet-50 10.2%

... It Was The Worst Of Times.

Agenda

- Next Word Prediction
- Transformer Essentials
- Von-Neumann Architecture & Bottleneck
- New Paradigm: Adding Compute Into SRAM
- Associative Compute Grid Power
- Modular IP For Size and Power Budgets
- Token Rates
- Try It Out!!

Next Word Prediction

• • • • • • • • • • • • •

- task: next token prediction
- idea dates back to 70s

- task: next token prediction
- idea dates back to 70s
- 90s: RNNs, LSTMs, GRUs...
- nothing works well until *Transformer*
- wait...just next token?

• *inference*: more "context" is better

- *inference*: more "context" is better
- positional encoding

- *inference*: more "context" is better
- positional encoding
- attention: weighted focus

ăă 🖱

- *prompt phase*: tokens can be processed in parallel (compute bound)
- completion phase: tokens generated 1 at a time (IO bound)

I Asked ChatGPT...

Do Transformers Consume A Lot Of Power?

I Asked ChatGPT...

Do Transformers Consume A Lot Of Power?

Transformers, particularly large and deep ones like GPT-3 and its successors, can indeed consume a significant amount of power when running inference or training. The power consumption of a transformer model depends on several factors:

凸 ⑦

I Asked ChatGPT...

Do Transformers Consume A Lot Of Power?

Transformers, particularly large and deep ones like GPT-3 and its successors, can indeed consume a significant amount of power when running inference or training. The power consumption of a transformer model depends on several factors:

 Hardware: The choice of hardware plays a crucial role in determining power consumption. Graphics processing units (GPUs) and application-specific integrated circuits (ASICs) designed for deep learning tasks can be more power-efficient than traditional central processing units (CPUs).

ф П

Transformer Essentials

Transformer

• 2017: "Attention Is All You Need", Vaswani, et. al.

- 2017: "Attention Is All You Need", Vaswani, et. al.
- 2023: ChatGPT4, Llama 2, Palm 2, Claude 2, ...
- OpenAI: 1 Billion in Revenue
- Nvidia: 100% YY Revenue

.

Decoder Is All You Need!

- 2017: "Attention Is All You Need", Vaswani, et. al.
- 2023: ChatGPT4, Llama 2, Palm 2, Claude 2, ...
- OpenAI: 1 Billion in Revenue
- Nvidia: 100% YY Revenue

Parameter Scaling!

- 2017: "Attention Is All You Need", Vaswani, et. al.
- 2023: ChatGPT4, Llama 2, Palm 2, Claude 2, ...
- OpenAI: 1 Billion in Revenue
- Nvidia: 100% YY Revenue

Input Token

23 | ©2023 SNIA. All Rights Reserve.

Example: ChatGPT3

Prediction

Next Token

Output Token

- 96 layers
- 96 "attention heads"
- 175 billion parameters ("weights")

Example: ChatGPT3

Prediction

Token

Next .

- 96 layers
- 96 "attention heads"
- 175 billion parameters ("weights")
- Training from scratch requires weeks
 on 10s-100s of GPUs

Compute-In-Memory For Transformer

Typical Von-Neumann Architecture

The dominate compute paradigm for 60 years!

Where is memory and where is compute?

Intel Meteor Lake Die

Typical Von-Neumann Architecture

The dominate compute paradigm for 60 years!

Intel Meteor Lake Die

Typical Von-Neumann Bottleneck

The dominate compute paradigm for 60 years!

Intel Meteor Lake Die

Is there a better way?

In-Memory-Computing Hardware Landscape

Associative IMC

GSI Technology's Associative Processor

GSI APU (G1)

Add Processors Into SRAM

Compute-in-Memory paradigm...

GSI APU (G1)

............

Add Processors Into SRAM

A "typical" SRAM grid...

GSI APU (G1)

Add Processors Into SRAM

A "typical" SRAM grid with interleaved processors.

GSI APU (G1)

20 microns (avg) between BP and SRAM

Associative Processing

.

Associative Processing

Each BP is Simple...

Associative Processing

MxN BPs forms a powerful compute grid (2M<->48Mb)

Associative Processing

L1 is interleaved too (96Mb)

100 microns (avg) between BP and L1

2046

BP -

BP

BP -

BP -

BP

BP BP

BP BP

BP

BP

BP

BP

BP

BP

BP

BP

2045

BP

2

1

BP BP BP BP

BP BP BP

BP BP BP

BP BP BP

BP BP BP

BP BP BP

BP BP BP

BP BP BP

BP BP BP

BP BP BP

BP BP BP

BP BP BP

BP BP BP BP

BP BP BP

BP BP BP

BP BP BP

0

Section 0

Section 1

Section 2

Section 3

Section 4

Section 5

Section 6

Section 7

Section 8

Section 9

Section 10

Section 11

Section 12

Section 13

Section 14

Section 15 _

Bank

GSI APU (G1)

39 | ©2023 SNIA. All Rights Reserved.

Example: ChatGPT3

Prediction

Token

Next .

- 96 layers
- 96 "attention heads"
- 175 billion parameters ("weights")
- Most operations are MAC for matrix multiplication

"...it's full of stars MatMul!"

Low Power LLM?

41 | ©2023 SNIA. All Rights Reserved.

Low Power LLM?

42 | ©2023 SNIA. All Rights Reserved.

Modular IP For Reticle and Power Budgets

Example: MatMul "Tiling" with 6MB

512GB/s Embedded CPU + DMA Data Trans+Buff Data Trans+Buff Path L1 L1 3MB SRAM 3MB SRAM N Control 8.6 TB/sec 8.6 TB/sec mm 32K Associative 32K Associative BPs BPs 3.3 mm

Memory "bank" architecture accommodates different size and power profiles...

43 | ©2023 SNIA. All Rights Reserved.

6.1 TOPS (INT8)

4.8 TOPS (FP8)

5W TDP

Modular IP For Reticle and Power Budgets

Example: MatMul "Tiling" with 6MB

Llama2 Completion Phase Token Rates

Try It Out!

Product	Avail
G1 with / 2M BPs in PCle	Now
G2 with / X10 L1 Interleaved Cache	Q4
Microcode Compiler For C/Python (OSS)	Now
Modular IP Licensing	Q4

associativecomputing@gsitechnology.com

The End

Section Title

Section Subtitle

• ۲ ۲ • • • • • • • • • • ۲ • 🕘 • • . ۲ •

Section Title

Section Subtitle

50 | ©2023 SNIA. All Rights Reserved.

Light Slide Title

Bullets 1

- Bullets 2
 - Bullets 3
 - Bullets 4
 - Bullets 5

Dark Slide Title

Bullets 1

- Bullets 2
 - Bullets 3
 - Bullets 4
 - Bullets 5

Please take a moment to rate this session.

Your feedback is important to us.

