
1 | ©2023 SNIA. All Rights Reserved.

Virtual Conference
September 28-29, 2021

An Emulation
Framework for

Computational Storage

Stephen Bates and Abhishek Gupta, TESL, Huawei

2 | ©2023 SNIA. All Rights Reserved.

Emulation=Inception=QEMUception

3 | ©2023 SNIA. All Rights Reserved.

Emulation=Inception=QEMUception

Is it real or is it emulated?
And do you even care?

4 | ©2021 Storage Developer Conference ©. Insert Company Name Here. All Rights Reserved.

The Case for Emulation
Hardware is Hard!

5 | ©2023 SNIA. All Rights Reserved.

 Hardware is hard!
 Chips take a long time to develop.
 Chips today need firmware, this is

buggy.
 Chips often (always) are broken

first time around.
 Look at CXL for example!
 Spec is at 3.0.
 Hardware < 1.0 ;-).

 How do software developers
develop without hardware?

The Case for Emulation - I

While other options exist, QEMU is
becoming the emulation environment of
choice. There are several ways QEMU
can provide emulation of hardware. We
will review these in this talk!

6 | ©2023 SNIA. All Rights Reserved.

 Hardware is expensive!
 Look at CXL for example!
 CXL-enabled servers cost a

bunch of money, have buggy UEFI
code, lack OS support etc.
 If the system breaks how do you

know what is to blame?
 Bad hardware?
 Bad firmware?
 Bad software?

 A software developer in a coffee
shop in Lima does not have
room in their backpack for a
Sapphire Rapids.

The Case for Emulation - II

While other options exist, QEMU is
becoming the emulation environment of
choice. There are several ways QEMU
can provide emulation of hardware. We
will review these in this talk!

7 | ©2023 SNIA. All Rights Reserved.

 Hardware is hard to debug!
 Look at CXL for example ;-).
 Reboot times are measured in

(ten) minutes.
 When things go wrong early in the

boot process there is often little
(zero) visibility or debug capability.
 And then you need to tweak

something and reboot again (and
again and again).

 Emulation enables full visibility
(gdb hardware anyone!?).

The Case for Emulation - III

While other options exist, QEMU is
becoming the emulation environment of
choice. There are several ways QEMU
can provide emulation of hardware. We
will review these in this talk!

8 | ©2023 SNIA. All Rights Reserved.

Sometimes you do need
actual hardware!
Sometimes performance is

important ;-) (but perhaps not
that often if you are a
developer).
Sometimes you need to

actually sell something ;-).
But much of the time

emulation is just fine.

The Case for Emulation - IV

While other options exist, QEMU is
becoming the emulation environment of
choice. There are several ways QEMU
can provide emulation of hardware. We
will review these in this talk!

9 | ©2023 SNIA. All Rights Reserved.

The Case for Emulation - VI

Is this the real life? Is this just fantasy?
Caught in a landslide, no escape from reality

Perhaps all Freddie was really looking for was
an emulation?

10 | ©2021 Storage Developer Conference ©. Insert Company Name Here. All Rights Reserved.

Emulation in QEMU
Is it real and do you care?

11 | ©2023 SNIA. All Rights Reserved.

 QEMU originated in 2003.
 Two types of emulation:
 Can emulate a CPU with a

different Instruction Set
Architecture (ISA) to the host (e.g.
emulate an arm64 CPU on an
Intel server). This is not the
emulation this talk cares about.
 Can emulate hardware that is not

actually present on the host
server. This is the emulation this
talk cares about.

Emulation in QEMU - I

QEMU supports a range of different
emulation modes. This includes the
emulation of hardware while using
accelerated emulation modes for the
CPU (e.g. Xen and KVM).

12 | ©2023 SNIA. All Rights Reserved.

 This talk focuses on the System
Emulation mode of QEMU.
 CPU is either emulated or

KVM/Xen accelerated.
 Rest of the system seen by the

”Virtual Machine” (VM) can be a
mix of real hardware and
emulated hardware.
 Real hardware can be assigned

completely to the VM (e.g. via
vfio) or para-virtualized.
 Fake hardware can be emulated

by QEMU or another process
running on the host.

Emulation in QEMU - II

While not covered in this talk the topic
of assigning real hardware to one or
more VMs running on a system is
fascinating. See topics like SR-IOV, SIOV,
vfio and mediated devices for more
information.

13 | ©2023 SNIA. All Rights Reserved.

System Emulation
 A mix of real hardware and

fake (emulated) hardware is
presented to the VM.
 The VM has no way of knowing

which hardware is “real” and
which is “fake”. Perhaps a
totem is needed?
 Since “fake” hardware is

actually software we can fully
control its behavior by editing
the source code!

Emulation in QEMU - III

Some examples of hardware that can be
emulated inside QEMU include:
• Storage devices (like NVMe).
• Persistent Memory (NVDIMMs).
• Networking Interface Cards (NICs).
• Peripherals.

14 | ©2021 Storage Developer Conference ©. Insert Company Name Here. All Rights Reserved.

Emulation Example in QEMU
KV-Capable NVMe SSDs in a Server Anyone?

15 | ©2023 SNIA. All Rights Reserved.

 batesste@bunbeg:~$ lspci
 00:00.0 Host bridge: Red Hat, Inc. QEMU PCIe Host bridge
 00:01.0 Ethernet controller: Red Hat, Inc. Virtio network device
 00:02.0 Display controller: Red Hat, Inc. Virtio GPU (rev 01)
 00:03.0 Audio device: Intel Corporation 82801FB/FBM/FR/FW/FRW (ICH6 Family) High Definition Audio Controller (rev 01)
 00:04.0 USB controller: NEC Corporation uPD720200 USB 3.0 Host Controller (rev 03)
 00:05.0 USB controller: Red Hat, Inc. QEMU XHCI Host Controller (rev 01)
 00:06.0 SCSI storage controller: Red Hat, Inc. Virtio block device
 00:07.0 Non-Volatile memory controller: Red Hat, Inc. QEMU NVM Express Controller (rev 02)
 00:08.0 Communication controller: Red Hat, Inc. Virtio console
 00:09.0 Unclassified device [0002]: Red Hat, Inc. Virtio filesystem
 00:0a.0 Unclassified device [00ff]: Red Hat, Inc. Virtio RNG

“I never knew Red Hat made NVMe SSDs!”

16 | ©2023 SNIA. All Rights Reserved.

 batesste@bunbeg:~$ sudo nvme list

 Node SN Model Namespace Usage Format FW Rev

 --------------------- -------------------- -- --------- -------------------------- ---------------- --------

 /dev/nvme0n1 5061A8FB-EF70-47BC-B QEMU NVMe Ctrl 1 68.72 GB / 68.72 GB 512 B + 0 B 8.0.0

Of course, this is an emulated NVMe SSD

1. The code running inside the Virtual Machine (VM) has no way of knowing if this NVMe SSD is real or
emulated.

2. The code running inside the VM is identical to the code that would talk to a real NVMe SSD. Same
kernel driver and same nvme-cli userspace code.

3. We can add or remove features to this NVMe SSD by changing the source code of QEMU (see next
slide). This means we can explore new NVMe features (either standard or vendor-specifc) before
hardware becomes available:
1. Key-Value capable NVMe SSDs.
2. FDP capable NVMe SSDs.

4. Now assuming point 2 this means SW developers can write code for new hardware without needing
new hardware. Cool!

17 | ©2023 SNIA. All Rights Reserved.

18 | ©2023 SNIA. All Rights Reserved.

How to build a KV-capable NVMe SSD (the hard way)

1. Build a LBA-capable NVMe SSD.
2. Allocate a bunch of over-committed firmware engineers to the project. Ignore the howls of protest from sales,

marketing, management etc.
3. Write firmware that implements the KV command set.
4. Debug firmware that implements the KV command set.
5. Validate your KV-capable NVMe SSD.

How to build a KV-capable NVMe SSD (the easy way)

1. git clone git@github.com:qemu/qemu.git
2. cd qemu
3. git checkout –b key-value origin/main
4. Make about 379 LOC changes to the nvme software.
5. git commit –a –m “key-value: Add key-value command set to NVMe emulation model”
6. mkdir build && cd build && ../configure && make –j 32 all && sudo make install
7. Spin up a VM using this new version of qemu-system-<arch>
8. Check out and test your KV-capable NVMe SSD. If you find a problem repeat steps 4-8.
9. Upstream your code!
10. Oh and Samsung have already done 1-8!!

mailto:git@github.com:qemu/qemu.git

19 | ©2023 SNIA. All Rights Reserved.

20 | ©2021 Storage Developer Conference ©. Insert Company Name Here. All Rights Reserved.

Emulation Example in QEMU
NVMe SSD below a CXL Switch in a Server Anyone?

21 | ©2023 SNIA. All Rights Reserved.

This is Interesting. But I can’t build it today.

CPU

DRAM

CXL
Switch NVMe

SSD

CXL
Type 3

• NVMe/CXL SSD for memory expansion
• P2P DMA between NVMe SSD and Type 3 CXL device for swap/page-cache.
• I would like to have this hardware available so software developers can start working on code for the

topics above and use-cases (like Computational Storage and Computational Memory)

22 | ©2023 SNIA. All Rights Reserved.

This is Interesting. But I can’t build it today. Or Can I?

CPU

DRAM

CXL
Switch NVMe

SSD

CXL
Type 3

• NVMe/CXL SSD for memory expansion
• P2P DMA between NVMe SSD and Type 3 CXL device for swap/page-cache.
• I would like to have this hardware available so software developers can start working on code for the

topics above and use-cases (like Computational Storage and Computational Memory)

23 | ©2023 SNIA. All Rights Reserved.

qemu-system-x86_64 \
-machine type=q35,hmat=on,nvdimm=on,cxl=on \
-enable-kvm -cpu host,migratable=no \
-nographic \
-serial mon:stdio \
-m 4G,maxmem=10G \
-smp 4,sockets=1,maxcpus=4 \
-numa node,nodeid=0,cpus=0-3,memdev=m0 \
-drive if=none,file=./images/cxl.qcow2,format=qcow2,id=hd \
-device virtio-blk-pci,drive=hd \
-device e1000,netdev=user0 -netdev user,id=user0,hostfwd=tcp::2222-:22 \
-rtc clock=host \
-kernel $KERNEL -append "nokaslr norandmaps root=/dev/vda1 console=ttyS0 \

earlyprintk=serial,ttyS0 ignore_loglevel printk_delay=0" \
-object memory-backend-ram,id=m0,size=4G \
-object memory-backend-file,id=cxl-mem1,share=on,mem-path=/tmp/cxltest.raw,size=256M \
-object memory-backend-file,id=cxl-lsa1,share=on,mem-path=/tmp/lsa.raw,size=256M \
-device pxb-cxl,bus_nr=52,bus=pcie.0,id=cxl.1 \
-device cxl-rp,port=0,bus=cxl.1,id=root_port13,chassis=0,slot=2 \
-device cxl-type3,bus=root_port13,volatile-memdev=cxl-mem1,lsa=cxl-lsa1,id=cxl-pmem0 \
-M cxl-fmw.0.targets.0=cxl.1,cxl-fmw.0.size=256M

24 | ©2021 Storage Developer Conference ©. Insert Company Name Here. All Rights Reserved.

Emulation Example in QEMU
A Rack-Scale Architecture that includes CXL Memory Area Networking (MAN)

25 | ©2023 SNIA. All Rights Reserved.

This is Interesting. But I can’t build it today.

26 | ©2023 SNIA. All Rights Reserved.

This is Interesting. But I can’t build it today. Or Can I?

27 | ©2023 SNIA. All Rights Reserved.

This is Interesting. But I can’t build it today. Or Can I?

https://memverge.com/cxl-qemuemulating-cxl-shared-
memory-devices-in-qemu/

28 | ©2021 Storage Developer Conference ©. Insert Company Name Here. All Rights Reserved.

Emulation Example outside QEMU
A NVMe Computational Storage Drive (CSD using QEMU, SPDK and vfio-user)

29 | ©2023 SNIA. All Rights Reserved.

 Up until now we have looked at
emulations that are based on
software that resides in the
QEMU git tree.
 This is great but not all devices

deserve to be upstream,.
 This is great but other code

software applications exist.
 Can do emulation in a separate

process to QEMU and connect
it too QEMU via something like
a socket?

Emulation outside of QEMU - I

QEMU could leverage emulation code
running in a separate process to the
main qemu system emulation process.

30 | ©2023 SNIA. All Rights Reserved.

 A team at Nutanix have
proposed vfio-user. A
mechanism that allows PCIe
devices to be emulated in a
separate process to QEMU.
 vfio-user has a specification and

consists of a server (the
emulated device) and the client
(QEMU or some other VMM).
 SPDK has been updated to

support being an NVMe
emulated device.

Emulation outside of QEMU - II

https://github.com/nutanix/libvfio-user

https://lists.gnu.org/archive/html/qemu-devel/2020-
11/msg02458.html

https://github.com/nutanix/libvfio-user
https://lists.gnu.org/archive/html/qemu-devel/2020-11/msg02458.html
https://lists.gnu.org/archive/html/qemu-devel/2020-11/msg02458.html

31 | ©2023 SNIA. All Rights Reserved.

Emulation outside of QEMU - III

QEMU

32 | ©2023 SNIA. All Rights Reserved.

We can modify SPDK to support
the upcoming TP 4091 and TP
4131 command sets that pertain
to computational storage.
We can then use QEMU and

vfio-user to expose this version
of SPDK as a NVMe CSD.
We can then install software

inside the VM to allow the VM
and it’s applications to leverage
the emulated CSD.

Emulation outside of QEMU - IV

QEMU

VM

SPDK’

vfio-user

33 | ©2023 SNIA. All Rights Reserved.

We can modify SPDK to support
the upcoming TP 4091 and TP
4131 command sets that pertain
to computational storage.
We can then use QEMU and

vfio-user to expose this version
of SPDK as a NVMe CSD.
We can then install software

inside the VM to allow the VM
and it’s applications to leverage
the emulated CSD.

Emulation outside of QEMU - IV

QEMU

VM

SPDK’

vfio-user

So what software goes here?

34 | ©2023 SNIA. All Rights Reserved.

 Linux Kernel: Can provide a
path to NVMe namespaces
(off all types) via
io_uring_passthru.
 xNVMe: Can provide access

to NVMe commands from
new and emerging command
sets.
SNIA’s Comp. Storage API:

Can tie xNVMe to
applications.

Emulation outside of QEMU - IV

QEMU

VM

SPDK’

vfio-user

So what software goes here?

35 | ©2023 SNIA. All Rights Reserved.

Conclusions

 Real hardware is HARD. And most of the time your software developers don’t
need it.
 QEMU is on a roll. A hugely successful hypervisor and system emulator. Get

to know it!
 Emulation can be done inside the QEMU source tree. And this can be ISA

emulation and/or hardware device emulation.
 Emulation of PCIe devices can be done outside the QEMU source tree via

vfio-user. Keeps QEMU source tree clean.
 All the parts we need for CSD/CSP/CSA emulation are coming. Hopefully

software devs can run with this to tie these devices to applications!

36 | ©2023 SNIA. All Rights Reserved.

Please take a moment to rate this session.
Your feedback is important to us.

	An Emulation Framework for Computational Storage
	Emulation=Inception=QEMUception
	Emulation=Inception=QEMUception
	The Case for Emulation
	The Case for Emulation - I
	The Case for Emulation - II
	The Case for Emulation - III
	The Case for Emulation - IV
	The Case for Emulation - VI
	Emulation in QEMU
	Emulation in QEMU - I
	Emulation in QEMU - II
	Emulation in QEMU - III
	Emulation Example in QEMU
	Slide Number 15
	Slide Number 16
	Slide Number 17
	Slide Number 18
	Slide Number 19
	Emulation Example in QEMU
	This is Interesting. But I can’t build it today.
	This is Interesting. But I can’t build it today. Or Can I?
	Slide Number 23
	Emulation Example in QEMU
	This is Interesting. But I can’t build it today.
	This is Interesting. But I can’t build it today. Or Can I?
	This is Interesting. But I can’t build it today. Or Can I?
	Emulation Example outside QEMU
	Emulation outside of QEMU - I
	Emulation outside of QEMU - II
	Emulation outside of QEMU - III
	Emulation outside of QEMU - IV
	Emulation outside of QEMU - IV
	Emulation outside of QEMU - IV
	Conclusions
	Please take a moment to rate this session.

