
Tejas Chopra, Sr. Engineer, Netflix

Memory Optimizations 
for Machine Learning

Tejas Chopra



Tejas Chopra, Sr. Engineer, NetflixTejas Chopra, Sr. Engineer, Netflix

- Introduction

- Memory footprint in ML

- Data Quantization

- Model Pruning

- Efficient Mini-batch selection

- Hardware considerations

- Future directions and research

Agenda

22



Tejas Chopra, Sr. Engineer, NetflixTejas Chopra, Sr. Engineer, Netflix

- Sr. Software Engineer, Netflix

- Co-Founder, GoEB1

- Tech 40 under 40, BCS Fellow

- TedX speaker: Cloud, Blockchain

- ex-Box, Datrium, Samsung, Cadence

Introduction

33



Tejas Chopra, Sr. Engineer, NetflixTejas Chopra, Sr. Engineer, Netflix

Memory Footprint in ML

- ML is transforming industries: healthcare, finance, 

ecommerce

- Models are growing in complexity
- Memory usage is increasing

- Optimizations for memory enable
- Training larger models with less resources

- Deploying models on resource constrained devices

- Reducing infra costs and energy consumption

- Challenges
- Balancing memory efficiency and model performance

- Diverse hardware platforms & architectures

44



Tejas Chopra, Sr. Engineer, NetflixTejas Chopra, Sr. Engineer, Netflix

- ML models consist of data structures like tensors and matrices
- Example: A 2D tensor of shape (1000, 1000) with 32-bit floats requires 4 

MB of memory

- Memory consumption during training:
- Storing model parameters, gradients, and optimizer states

- Intermediate activations and backpropagation buffers

- Memory allocation and deallocation:
- Dynamic memory management during forward and backward passes

- Potential for memory leaks and fragmentation

- Factors impacting memory footprint:
- Model architecture, depth, and width

- Batch size and input data dimensions

Memory Footprint in ML

55



Tejas Chopra, Sr. Engineer, NetflixTejas Chopra, Sr. Engineer, Netflix

- Data quantization: Reducing the precision of data 

representations
- Example: Converting 32-bit floats to 8-bit integers

- Benefits of quantization:
- Reduces memory footprint by 50-75%

- Faster computation and inference times

- Quantization techniques:
- Uniform quantization: Equal-sized intervals

- Non-uniform quantization: Variable-sized intervals based on data 

distribution

- Post-training quantization vs. quantization-aware training
- Post-training quantization: Quantizing trained models

- Quantization-aware training: Incorporating quantization during 

training

Data Quantization

66



Tejas Chopra, Sr. Engineer, NetflixTejas Chopra, Sr. Engineer, Netflix

- Model pruning: Removing unnecessary or redundant 

model parameters

- Pruning techniques:
- Magnitude-based pruning: Removing weights with small 

absolute values

- Structured pruning: Removing entire neurons, filters, or 

channels

- Iterative pruning and fine-tuning:
- Gradually pruning the model over multiple iterations

- Fine-tuning the pruned model to recover performance

- Benefits of pruning:
- Reduces memory footprint by up to 90%

- Faster inference times and energy efficiency

Model Pruning

77



Tejas Chopra, Sr. Engineer, NetflixTejas Chopra, Sr. Engineer, Netflix

- Mini-batch selection: Dividing training data into smaller subsets

- Impacts of batch size on memory usage:
- Larger batch sizes require more memory for intermediate activations and gradients

- Smaller batch sizes have lower memory requirements but may impact convergence speed

- Strategies for efficient mini-batch selection:
- Dynamic batch size adjustment based on available memory

- Gradient accumulation: Performing multiple forward and backward passes before updating weights

- Hardware considerations:
- Optimal batch sizes differ for CPUs, GPUs, and specialized accelerators

- Memory hierarchy and bandwidth impact batch size selection

- Best practices:
- Profile memory usage for different batch sizes

- Experiment with different batch sizes and gradient accumulation settings

- Consider trade-offs between memory efficiency and training speed

Efficient Mini Batch Selection

88



Tejas Chopra, Sr. Engineer, NetflixTejas Chopra, Sr. Engineer, Netflix

- Memory optimization techniques vary across hardware platforms

- CPUs:

- Leverage cache hierarchy and data locality

- Vectorization (SIMD) for parallel processing

- Memory alignment for efficient access patterns

- GPUs:

- Utilize high-bandwidth memory (HBM)

- Coalesced memory access for efficient data retrieval

- Maximize occupancy and minimize data transfer between CPU and GPU

- Specialized accelerators (e.g., TPUs, FPGAs):

- Leverage on-chip memory for fast access

- Optimize dataflow and computation graphs

- Exploit low-precision arithmetic and structured sparsity

Hardware Considerations

99



Tejas Chopra, Sr. Engineer, NetflixTejas Chopra, Sr. Engineer, Netflix

Example use cases

1. Image Classification with MobileNetV2:
● Applied 8-bit quantization to reduce memory footprint by 75%

● Achieved 70.2% top-1 accuracy and 89.5% top-5 accuracy on ImageNet

● Improved inference speed by 21% on a Qualcomm Snapdragon 845 processor

2. Language Translation with Transformer Model:
● Pruned 80% of weights while maintaining BLEU score within 0.1 of the original model

● Reduced memory footprint from 512 MB to 102 MB

● Enabled deployment on resource-constrained devices for real-time translation

3. Recommendation System with Collaborative Filtering:
● Applied mixed-precision training with 16-bit floats and 32-bit accumulation

● Reduced memory usage by 50% without impacting accuracy

● Scaled to handle larger datasets and provide personalized recommendations to millions of users

1010



Tejas Chopra, Sr. Engineer, NetflixTejas Chopra, Sr. Engineer, Netflix

- Neural Architecture Search (NAS) for memory-efficient models
- Automated search for optimal architectures balancing performance and memory usage

- Promising results in discovering novel memory-efficient architectures

- Quantization-aware training (QAT)
- Jointly optimizing model parameters and quantization parameters during training

- Improved accuracy compared to post-training quantization

- Sparse representations and computation
- Leveraging sparsity for memory optimization

- Techniques like sparse matrix multiplication, sparse convolutions, and sparse attention mechanisms

- Hardware-software co-design
- Jointly optimizing hardware architectures and software algorithms for memory efficiency

- Custom accelerators tailored for low-precision arithmetic and structured sparsity

- Memory-efficient transfer learning
- Adapting large-scale pre-trained models to resource-constrained environments

- Techniques like model compression, knowledge distillation, and parameter sharing

Future Directions & Research

1111



Tejas Chopra, Sr. Engineer, NetflixTejas Chopra, Sr. Engineer, Netflix

- Memory optimization is crucial for efficient and scalable ML deployments
- Techniques like data quantization, model pruning, and efficient mini-batch selection can 

significantly reduce memory consumption
- Hardware-aware optimization is essential for maximizing memory efficiency on diverse 

platforms
- Real-world case studies demonstrate the impact of memory optimization in various domains
- Future research directions offer promising avenues for further advancing memory optimization 

in ML
- Neural Architecture Search, quantization-aware training, sparse computation, hardware-software co-design, and 

memory-efficient transfer learning

Conclusion

1212



Tejas Chopra, Sr. Engineer, Netflix 13


