SNIA DEVELOPER CONFERENCE

=SDC

BY Developers FOR Developers

September 16-18, 2024
Santa Clara, CA

} Optimized Resource
Allocation for CXL
Tiered-Memory Systems

Heiner Litz & Andrew Quinn
UC Santa Cruz




Center for Research in Systems and Storage (CRSS)

The Center:

=5 Faculty

=15 Ph.D. & MS
=6 Sponsors

arm pQcerabyte

2 | ©2024 SNIA. All Rights Reserve

MARVELL

NUTANI>Z

d.

Research Topics: Output:
= CXL = High-impact research

= Al Systems @ Ceph
= Sustainability o
Dat " = Publications
"Ldla centers (ASPLOS, MICRO, SoCC, OSDI,
= Storage Devices ISCA, PLDI, HotOS, FAST)
= Operating Systems

- Networking = Excellently-trained

graduates

' C nter for Research
e n Systems and Storage
&

=SD¢C

7=
>



Today’s Problem
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CXL: Opportunities & Challenges

= Opportunities

= Addresses scaling issue by reducing memory cost

= Open standard enables “small players” to innovate

= Computational memory enables TCO & perf improvements
= Challenges

= Performance overhead

= Heterogeneity increases complexity

= Requires cross-layer (SW/HW) optimizations
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Today’s Talk

= Part 1: How can we exploit CXL memory to improve TCO (TMC)?
- Delivered by Dr. Heiner Litz

-Part 2: How can we exploit CXL memory to improve cluster job

performance (Bede)?
- Delivered by Dr. Andrew Quinn
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Memory Tiering

CPU

LLC

~

Main memory

Fast tier (DRAM) Slow tier (CXL

\_

Tiered memory seeks to maintain similar performance at a lower cost
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Determining Optimal Memory Ratio is Hard

— Unit cost
— Execution time

DRAM: x $ / GiB / hour
PMEM: y $ / GiB / hour
LLC: y $/GiB/ hour Best strategy

— Total cost

12 0 02 04 06 08 0 02 04 06 08 1
DRAM : DRAM + PMEM DRAM vs DRAM +
PMEM
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Determining Optimal Memory Ratio is Hard

— Unit cost

— Execution time — Total cost

/\/___/

DRAM: x $ / GiB / hour
CXL: y $/GiB / hour Best strategy
LLC: z$/GiB / hour

7 0 02 04 06 08 0 02 04 06 08 1
CXL/DRAM Ratio CXL/DRAM Ratio

Large search space, scales with memory tiers
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User: Lowest $ at certain performance level
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Wrong configurations increases users’ cost significantly
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Cloud Provider: Highest Packing Density

Config-1 Config-2
CXL C C
DRAM C C

CXL - I CXL - I

Server 1 ' C nter for Research Servi__,

p  UNIVERSITY OF CALIFORNIA .
n Systems and Storage {RY H N-[H [: H “ Z S D @
i@ / .

7
YN

10 | ©2024 SNIA. All Rights Reserved.

=



Cloud Provider: Highest Packing Density
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Cloud Provider: Highest Packing Density
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Cloud Provider: Highest Packing Density
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Contributions
Contributions

e Prior Work
o Blackbox ML-based techniques Bayes[1], Collaborative Filtering [2]
o Trained on N workloads and M configurations, predict a configuration
e Our Work (TMC)
o White-box performance model
o Data-layout hints (what data into CXL/DRAM?)
o Why is a configuration best?
o Predicts performance of a workload (instead of suggesting a configuration)
o What-if analysis
[1] Alipourfard et al.: CherryPick: Adaptively Unearthing the Best Cloud Configurations for Big Data Analytics (NSDI’17).

[2] Klimovic et al.: Selecta: Heterogeneous cloud storage configuration for data analytics (ATC’18).
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TMC Overview

...................

Conflguratlon

Cycles, # Inst., Mem. Latency, MLP Mem_.
allocation 5
0.56 384

O Profilin
N *l 9 ]* 0.24 128 | Placement
451 640 e
- LLC Size e b \|=
Freq Table Cache miss curve placement L\ =

# misses

TMC devises a performance model based on the understanding of

hardware performance characteristics
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Model Generation

fast _ 0% slow memory, max LLC

fas 0% slow memory, min LLC

V X}w 100% slow memory, max LLC
Slze time

0. 56 384 -
024 128
451 b0 Coman |

Data structure access frequency Cache Miss Curves Memory level Parallelism

e

[Profiling Step (3 Conflguratlons)

# misses

Performance Model
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Model Prediction

Memory access rate

O,

Slow memory
access rate:

0.28

©,
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128 MiB
4.51 640 MiB
0.56 384 MIB
CXL I DRAM
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192 MiB I 192 MiB : 640 MiB
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CXL I DRAM
Hash Lllzzl List2 E>
192 MiB : I 640 MiB
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Evaluation

=
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Evaluation Performance Prediction
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Evaluation Performance Prediction
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Operator Resource efficiency

B Naive [l T™MC
1.25
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Compact cluster

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 Avg.

1.25
1.00
0.75
0.50
0.25
0.00

Execution cost

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 Avg.

Workload |\/|IX (4 out of 6)
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Resource efficiency

B Naive [l T™MC

1.256
1.00
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0.50
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Compact cluster

1.25 TMC improves resource efficiency by 17%
1.00
0.75

0.50
0.25
0.00

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 Avg.
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Search cost

B Random [l Bayesian Optimizaton [l TMC @ Random [ Bayesian Optimization [ TMC
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Search cost

B Random [l Bayesian Optimizaton [l TMC @ Random [ Bayesian Optimization [ TMC
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Conclusion

= TMC provides a performance model over prior work

= Selects optimal performance/TCO for the client
= Optimizes resource allocation for the data center operator

= Enables what-if analysis

= TMC reduces the search cost by 3x over prior work

= TMC increases resource efficiency by 17%

Center for Research
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Scheduling

= Job Scheduling is key across many computer systems

= Cluster management (e.g., Kubernetes, Mesos, Borg)
= Data Analytics (e.g., Spark, Hadoop)

= Machine Learning (e.g., PyTorch, TensorFlow) kubernetes
= Efficient scheduling is crucial for large data centers
= Even small improvements can save millions at scale
Sl
: 4P )
O PyTorch  g«s MESOS YK
Y el Spark

Center for R
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Scheduling Example

= Allocate data-center resources for compute jobs

= Jobs require resources, schedule assigns idle resources

J1 J2 J3 J4
(0.2, 0.4) (0.3, 0.5) (0.1, 0.2) (0.4, 0.9) | Fragmented Memory
A 12
CPU Memory J1
J1 73 J3
CPU Mem CPU Mem

Machine1 Machine2

Up to 50% of Jobs face scheduling delays;!
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CXL to the Rescue?

= Split memory across machines and a CXL memory Pool

J1 J2 J3 J4 4 Ja
(0.2,0.4) (0.3, 0.5) (0.1, 0.2) (0.4, 0.9) J J3
J3 J1 J2
J2
J1 J3
CPU Mem CPU Mem

Machine1 Machine2 CxL

Center for Research
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Bede

= Advantages: ]Server !
l @ Server

= Less scheduling delay !Server

= Lower cost lob I [Serverf— 1
\‘|Scheduler # Server
Server — I
= Disadvantages: ’:
) I Server

= Jobs execute more slowly F-.‘.’ff. A o~ [+ I

=
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Bede Research Questions

P - o oy

= Bede Configuration? ] Server !
l @ Server

= Built cluster simulator! !Server Pod |
\‘|Scheduler . Server
S
= Bede Scheduler? l {Server]—="__pod_

iServer !
= Two new schedulers! . —
IServer Pod |

Up to 30x faster than
State-of-the-art!
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Bede Cluster Simulator

KwOrkload Trace: \
Job_id,Start,End,Cores,Memory
1,0,658200,8,16
2,0,2591400,2,4

3,0,2796400,4,32

\ /
fConfiguration: N

e Number of servers Job, machine, local memory, Start, Finish
e Server shape Cluster 1,M1,20,0,658200

e Servers per pool Simulator 2,M2,100,1500,2592900
e Pool size

e  Scheduling Policy

o
p

Slowdown Models:

= Cluster 0 === Cluster 2
—— Cluster1 === Cluster 3

25 &
- : )
g20 [

15] »

10

[ 20 40 60 80 100
Local Memory
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Bede Cluster Simulator—\Workloads

= Azure Cluster Traces (2017, 2019)
= Cortez et al. SOSP 2017

= Google Borg Traces (Clusters B, D)

= Tirmazi et al. Eurosys 2020
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Bede Cluster Simulator—Configuration Methodology

= Server Shapes

Utilization Graph

- 40

= 100th percentile of requested CPU

35

= 192 cores (large cloud instance) o 8
= Memory at 50th, 75th, 85th, 95th
percentile io v

10

= #Servers-per-pool of 2,4,...,32

20 1

= Pools of 0,10,...,1700% of memory

O.IO 0:5 1.'0 1.'5 2j0 2:5

= SOTA scheduling policies
P e, TN =SDGE
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Bede Cluster Simulator—Slowdown Models

= Methodology:

= Use Dual-socket NUMA == Cluster 0 = Cluster 2

= Cluster 1 = Cluster 3

= All compute on node 1

= Vary memory [0—100%] across nodes = &
g 2.0
B
2 1.5
= Scale Factor (SF) w7
1.0

= Account for uncertainty

= Multiplies NUMA models by constant factor 0 20 40 60 80 100
Local Memory

= SF 2 means CXL twice as slow as NUMA.

1

Center for Research
2 in Systems and Storage

ik =SDE

s
>-—

)

34 | ©2024 SNIA. All Rights Reserved.



Bede Cluster Simulator

/wOrkload Trace: \
Job_id,Start,End,Cores,Memory
1,0,658200,8,16
2,0,2591400,2,4

3,0,2796400,4,32

\ /
/Configuration: N

e Number of servers Job, machine, local memory, Start, Finish
e Server shape Cluster 1,M1,20,0,658200

e Servers per pool Simulator 2,M2,100,1500,2592900
e Pool size

e Scheduling Policy

-
/

Slowdown Models:

= Cluster 0 === Cluster 2
—— Cluster1 === Cluster 3

25 &
- : )
g20 [

15] »

10

[ 20 40 60 80 100
Local Memory
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Bede Scheduling Policies

= Existing State-of-the-art
» Generic: FIFO, SJF

= Far-memory specific.: CFM, Pond

- Novel alignment-based policies L= min(memg,, mem,,)
A =(core,_, memSeNer, mem_ >
= EVPM-Far: FIFO with alignment R =<coreJ oL, 1-L0
= T(etris)-Far: SJF with alignment Alignment =A - R
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Evaluation

= How many servers should be attached to each pool?
= How should memory be split between servers and pools?

= How does job performance vary by scheduling policy?

5555 UNIVERSITY OF CALIFORNIA
Center for Research e ’ 24
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Servers Per Pool

RC19 === RC17 === GoogleB Knee Point RC19 === Knee Point RC17 === Knee Point GoogleB

Scale = 0.5, Mem Cluster = 0.5

Q .
& |
— |
F 400000 !
= |
&

S !

300000+

o I
>

< |

10 20 30
Machines per Pool
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Servers Per Pool

RC19 = RC17 == GOOQleB Knee Point RC19 === Knee Point RC17 —== Knee Point GoogleB
Scale = 0.5, Mem Cluster = 0.5 Scale = 0.5, Mem _Cluster = 0.75 Scale = 0.5, Mem_Cluster = 0. 85 Scale = 0.5, Mem _Cluster = 0.95
() . (0] . .
E i £ N £ 3000001 N £ N
F 400000 i = 300000 ! = - " 200000
= | = =4 1 =
200000+ i '
5300000 & 506606 1 & 1000004
1 1 ] 1
Z [ Z 100000 i z [ z [
10 20 30 10 20 30 10 20 30 10 20 30
Machines per Pool Machines per Pool Machines per Pool Machines per Pool
Scale = 1.0, Mem_Cluster = 0.5 Scale = 1.0, Mem_Cluster = 0.75 Scale = 1.0, Mem_Cluster = 0.85 Scale = 1.0, Mem_Cluster = 0.95
qé 600000 : _‘é’ \ : -qé : -g 4000001 \L
[ 1 = [ [
) > 400000 )
E'500000~ I 5400000 : 2 1 S !
§ - § 1 § 1 § 200000 i
p 200000 | 4
400000 /\ $200000 i o i <) i
< ! < ! < ! < !
10 20 30 10 20 30 10 20 30 10 20 30
Machines per Pool Machines per Pool Machines per Pool Machines per Pool
Scale = 2.0, Mem_Cluster = 0.5 Scale = 2.0, Mem_Cluster = 0.75 Scale = 2.0, Mem_Cluster = 0.85 Scale = 2.0, Mem_Cluster = 0.95
o o = o 600000 s
Eannnnl\ | ‘E ‘x ‘E ‘k' ’E WN'
= .
: 8 | ach most of the advant
Se Servers per pool achieves most O € advantage
o
o
<C

10 20 30 10
Machines per Pool

20
Machines per Pool

30

10 20
Machines per Pool

30 10 20 30

Machines per Pool
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Pool server memory split

RC19  =ss== RC17

Scale = 0.5, Mem Cluster = 0.5

© 450000
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< T T T T T
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Local Memory Percentage

s =SDE

er for Research
\l
40 | ©2024 SNIA. All Rights Reserved. § \\ , ' SV tems and Storage




Pool server memory split

RC19 w—— RC17

Scale = 0.5, Mem Cluster = 0.5 Scale = 0.5, Mem Cluster = 0.75 Scale = 0.5, Mem Cluster = 0.85 Scale = 0.5, Mem Cluster = 0.95
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8 80-90% of local memory is ideal
o
>
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Scheduling Policies

mmmmm CFM === Greedy ~ === NoFar  ==s== Pond ~ === EPVM-far === T-Far

1.00

0.75]
L
O 0.50]
O

0.25]

0.00]

103 104  10° 106
Completion Time

Center for Research
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Scheduling Policies

— CFM ms Greedy == NoOFar == Pond m EPVM-far m— T-Far

1.00 1.00 1.00 1.00
0.75 0.75 0.75 0.75
[V . . [T
0 0.50 0 0.50 0 0.50 0 0.50
u] o ] )
0.25 0.25 0.25 0.25
0.00 0.00 0.00 0.00
103 10 10° 10° 103 104 10° 106 10! 103 10° 107 10t 103 10° 107
Completion Time Completion Time Completion Time Completion Time
(a) Azurel7, scale factor 0.5. (b) Azurel9, scale factor 0.5. (c) GoogleB, scale factor 0.5. (d) GoogleD, scale factor 0.5.
1.00 1.00 1.00 1.00
0.75 0.75 0:75 0.75
'S [T . [T
00.50 0 0.50 0 0.50 0 0.50
(@] (@] (@] (@]
0.25 0.25 0.25 0.25
0.00 0.00 0.00 0.00
103 10 10° 106 103 10 10° 106 10° 10! 102 103 104 10° 106 100 10t 102 103 104 10° 106
Completion Time Completion Time Completion Time Completion Time
(e) Azurel7, scale factor 1.0. (f) Azurel9, scale factor 1.0. (g) GoogleB, scale factor 1.0. (h) GoogleD, scale factor 1.0.
1.00 1.00 1.00 fW— 1.00
T-Far outperforms NoFar by up to 33x, CFM by up to 30x
(i) Azurel7, scale factor 2.0. (j) Azure19, scale factor 2.0. (k) GoogleB, scale factor 2.0. (1) GoogleD, scale factor 2.0.
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Bede Conclusion

= Built simulator to explore configurations

= Small pools work well

= Two novel scheduling algorithms

= Up to 30x improvement over state of the art

Center for Research
in Systems and Storage
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Contributions

= CXL is a promising technique to address memory cost
= Not a plug-in replacement, many deployment challenges
= Our work enables modeling of CXL performance & TCO

= Automation can address the complexity challenges of CXL

Center for Research
in Systems and Storage
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Contributions

= CXL is a promising technique to address memory cost
= Not a plug-in replacement, many deployment challenges
= Our work enables modeling of CXL performance & TCO

= Automation can address the complexity challenges of CXL

Please reach out if you want to collaborate with us: www.crss.us
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