G cipeT

Accelerate Everything

Enabling Peer-to-Peer Traffic with NoLoad® NVMe Computational
Storage and P2PDMA and Examining Real World Use Cases

Andrew Maier
Strategic Account Lead/Firmware Team Lead

September 16, 2024

C

~| €mmerT

Outline

e Introduction to P2ZPDMA

* Discuss recent framework updates

» Userspace Interface Example
» Userspace Interface Performance Testing

 Potential Use Cases
e SSD <-> SSD
e NIC <-> SSD

 Summarize and discuss next steps

EIDETICOM COPYRIGHT 2024

G ciner

- | epeTi

Why P2PDMA? G cineT

» PCle devices are getting more plentiful and faster

* PCle devices have increasing more and more memory (GPUs, SSDs, etc)
* More and more memory is becoming HBM

 Some DMA transfers can be made more efficient by eliminating the use of
host DRAM

* Results in more efficient DRAM usage and, in some cases, lower latency for applications

* Supported on most modern CPUs (Intel/AMD/ARM)

» Upstream equivalent to NVIDIA’s GPUDirect .
PCI|I >

EXPRESS

)
O U

EIDETICOM COPYRIGHT 2024

C

~| emeTicom

Introduce Peer-to-Peer Transfers (P2ZPDMA)

Traditional DMA Between
PCle Devices

Traditional DMA Between
PCle Devices with P2PDMA

EIDETICOM COPYRIGHT 2024

G cneTicom

Features

High performance interface

Open-source framework
Eliminates RAM Usage

- | epeTi

What is Peer-to-Peer (P2P)? G ciner

P2PDMA 1s an open source upstream framework for registering/using p2p memory

Simple API for registering resources
« Any PCle BAR (or partial BAR) can be mapped as a P2PDMA region

int pci_p2pdma_add_resource(struct pci_dev *pdev, int bar, size t size,
u4 offset)

P2PDMA regions are available to both Kernelspace and Userspace applications
P2PDMA supported in NVMe

EIDETICOM COPYRIGHT 2024

C

- | epeTi

NVMe Controller Memory Buffer (CMB)

G ciner

Controller Memory Buffer (CMB) 1s a BAR exposed by an NVMe device in the standard
Introduced in NVMe v1.2 (2014)

3.1.4.11 Offset 38h: CMBLOC - Controller Memory Buffer Location

This optional property defines the location of the Controller Memory Buffer (refer to section 8.2.1). If the
controller does not support the Controller Memory Buffer (CAP.CMBS), this property is reserved. If the
controller supports the Controller Memory Buffer and CMBMSC.CRE is cleared to ‘0, this property shall be

cleared to Oh.

Developed to support both control and data flow through the NVMe CMB

* Supported in the upstream linux driver

All NVMe CMB devices are registered as P2PDMA accessible memory
» Accessible by both Kernelspace and Userspace

NVMe 2.0 introduced more features for supporting CMB (CMBMSC for Virtual Machine

Support)

Figure 52: Offset 50h: CMBMSC - Controller Memory Buffer Memory Space Control

Bits

Type

Reset

Description

63:12

RW

Oh

Controller Base Address (CBA): This field specifies the 52 most significant bits of the
64-bit base address for the Controller Memory Buffer's controller address range. The
Controller Memory Buffer's controller base address and its size determine its controller
address range.

The specified address shall be valid only under the following conditions:

a) no part of the Controller Memory Buffer's controller address range is greater
than 264 - 1; and

b) if the Persistent Memory Region’s controller memory space is enabled, then the
Controller Memory Buffer's controller address range does not overlap the
Persistent Memory Region’s controller address range.

EIDETICOM COPYRIGHT 2024

< | empeTi

NoLoad® Computational Storage Processor

Computational Storage Processor (CSP)
* Purpose built for accelerator of storage and
compute workloads
* Does not directly have any storage

NoLoad Platform
e NoLoad NVMe Front End

* Flexible size NVMe CMB (all NoLoad
images have at least 512MiB)

 P2PDMA enabled by default (with NVMe
CMB)

» Accelerators can be added into the
P2PDMA path easily and using
upstream tools/drivers

EIDETICOM COPYRIGHT 2024

G ciner

- | €mmeTicom

P2PDMA Recent Milestones

Linux v4.20
P2PDMA initially

accepted into the
kernel

2018 Q4

Linux v6.2

P2PDMA userspace
interface upstreamed
into the kernel

2023 Q1

EIDETICOM COPYRIGHT 2024

G cneTicom

#) Ubuntu

Ubuntu 24.04 LTS

P2PDMA framework
fully enabled by
default

2024 Q2

C

-| eeTi

P2PDMA Integration — Kernelspace Applications G cineT

» Kernelspace applications have fine grained access to memory types

* Full API for registering, monitoring, and using P2PDMA memory
» pci_p2pdma_add_resource — register a P2ZPDMA region
* pci_p2pdma_distance_many — determine the distance from a P2ZPDMA provider
* pci_has_pZ2pmem — check if PCle device has any P2PDMA memory published
» pci_p2pmem_find_many — Find a P2PDMA published device
» pci_alloc_p2pmem — allocate P2PDMA memory
* pci_free_pZpmem — free P2PDMA memory
* pci_pZpmem_virt_to_bus — Get the bus address of a P2PDMA virtual address
» pci_p2pmem_alloc_sgl — allocate SGL of P2PDMA memory
» pci_p2pmem_free_sgl — free SGL P2PDMA memory
* pci_p2pmem_publish — publish P2PDMA memory for other devices to use with pci_p2pdma_find
* pci_p2pdma_enable_store — parse and store the P2ZPDMA enabled configfs/sysfs attribute
* pci_p2pdma_enable_show — show the P2PDMA enabled configfs/sysfs attribute

EIDETICOM COPYRIGHT 2024

C

| emeri

10

P2PDMA Integration — Userspace Applications

* Linux community finally agreed on an interface
« After many failed iterations

» sysfs/configfs interface for accessing P2ZPDMA registered memory
(/sys/device/..../p2pmem)

/sys/class/nvme/nvmel0/device/p2pmem $ pwd
/sys/devices/pci10000:5d/0000:5d:00.0/0000:5e:00.0/0000:5f:07.0/0000:63:00.0/p2pmem

s/class/nvme/nvmel0/device/p2pmem $ 1s
sys/class/nvme/nviiel07device7p2pmem $ cat size

536870912

/sys/class/nvme/nvmel0/device/p2pmem $ cat available
536870912

/sys/class/nvme/nvmel0/device/p2pmem $

allocate: File to mmap for allocating against the P2ZPDMA memory

available: (print) Shows the current available P2ZPDMA memory (in bytes)

G ciner

published: (print) Shows the amount of published P2ZPDMA memory(in bytes)

size: (print) Shows the total amount of P2PDMA memory (in bytes)

EIDETICOM COPYRIGHT 2024

| emeri

11

P2PDMA Integration — Userspace Example

AMD EPYC 7302P 16-Core
Ubuntu 24.04 LTS

PCle I
C

W

SSD NolLoad
/dev/nvmeO /dev/nvmel

EIDETICOM COPYRIGHT 2024

G ciner

Consider a system with an SSD
(/dev/nvme0) and a NoLoad
(/dev/nvmel) and the following
example data path

| emeri

12

P2PDMA Integration — Userspace Example

AMD EPYC 7302P 16-Core
Ubuntu 24.04 LTS

L -]
- o e

SSD NolLoad
/dev/nvmeO /dev/nvmel

EIDETICOM COPYRIGHT 2024

1.

G ciner

Consider a system with an SSD
(/dev/nvme0) and a NoLoad
(/dev/nvmel) and the following
example data path

Data transfer from the SSD to
the NoLoad CMB

. Aka a read from the SSD to the
NoLoad CMB buffer

| emeri

13

P2PDMA Integration — Userspace Example

AMD EPYC 7302P 16-Core
Ubuntu 24.04 LTS

PCle I

SSD NolLoad
/dev/nvmeO /dev/nvmel

EIDETICOM COPYRIGHT 2024

G ciner

* Consider a system with an SSD
(/dev/nvme0) and a NoLoad
(/dev/nvmel) and the following
example data path

1. Data transfer from the SSD to
the NoLoad CMB

. Aka a read from the SSD to the
NoLoad CMB buffer

2. Trigger internal data transfer
from CMB to accelerator (1.e
compression)

| emeri

14

P2PDMA Integration — Userspace Example G cineT

« P2PDMA sysfs allocate file access is simple
« Simply put the fd of the opened file into a mmap call

fd = open("/sys/class/nvme/nvmel/device/p2pmem/allocate”, O_RDWR | O_BINARY);

*data = mmap(, 4096, PROT_READ | PROT_WRITE, MAP_SHARED, fd, ©);

* The data variable in the above snippet now (upon success) will contain a pointer to the
P2PDMA memory that can be used in DMA operations

« For example, this can be used as the source/destination buffer for NVMe read calls (or IOCTLs)

rc = read(ssd_fd, data, 4896);

nvme_user_io cmd = {};
cmd.opcode = NVME_CMD_WRITE;
cmd.nblocks = () (4096/512) - 1;
cmb.addr = ()data;

rc = ioctl(noload_fd, NVME_IOCTL_SUBMIT_IO, cmd);

EIDETICOM COPYRIGHT 2024

| emeri

15

P2PDMA Integration — Userspace Example G cineT

* Consider a system with an SSD
(/dev/nvme0) and a NoLoad

(/dev/nvmel) and the following
AMD EPYC 7302P 16-Core example data path
Ubuntu 24.04 LTS

1. Data transfer from the SSD to
the NoLoad CMB

I . Aka a read from the SSD to the
NoLoad CMB buffer

rc = read(ssd_fd, data, 4096);

SSD NolLoad
/dev/nvmeO /dev/nvmel

EIDETICOM COPYRIGHT 2024

| emeri

16

P2PDMA Integration — Userspace Example

AMD EPYC 7302P 16-Core
Ubuntu 24.04 LTS

PCle I
2.
! lc

1.

s
[

0
i’m

SSD NolLoad

G ciner

Consider a system with an SSD
(/dev/nvme0) and a NoLoad
(/dev/nvmel) and the following
example data path

Data transfer from the SSD to
the NoLoad CMB

. Aka a read from the SSD to the
NoLoad CMB buffer

Trigger internal data transfer
from CMB to accelerator (1.e
compression)

nvme_user_io cmd = {};

/dEV/nvmeo /dev/nvmel cmd.opcode

= NVME_CMD_WRITE;

cmd.nblocks = ()(4096/512) - 1;

cmb.addr = (

rc = ioctl

EIDETICOM COPYRIGHT 2024

)data;

(noload_fd, NVME_IOCTL_SUBMIT_IO, cmd);

s| eperi

Testing the Framework — SSD <-> SSD

AMD EPYC 7302P 16-Core
Ubuntu 24.04 LTS

SSD NolLoad

EIDETICOM COPYRIGHT 2024

G ciner

Consider a test to use the new
Userspace interface

| emeri

18

Testing the Framework — SSD <-> SSD

AMD EPYC 7302P 16-Core
Ubuntu 24.04 LTS

SSD NolLoad

EIDETICOM COPYRIGHT 2024

G ciner

 (Consider a test to use the new
Userspace interface

* Generate traffic using the DMA

engines of the SSDs targeting
the NoLoad CMB using
P2PDMA

* FIO will generate the traffic

* We will send Read commands to
the SSDs with the output data
buffer being the NoLoad CMB
(via P2PDMA)

* To enable P2PDMA userspace
with FIO we simply change the
iomem variable as shown below:

~/FI0 % cat p2p-read.fio
[global]
runtime=1h
time based=1
group_reporting=1
itoengine=L1ibaio
bs=1M
1lomem=mmapshared: /sys/class /nvme/nvme2 /device/p2pmem/allocate
1odepth=16
direct=1
zero_buffers=1

[p2pmem-read]
rw=read
numjobs=16

| emeri

19

Testing the Framework — SSD <-> SSD

AMD EPYC 7302P 16-Core
Ubuntu 24.04 LTS

PCle
" 2 J 3 Y =
i« -
SSD SSD SSD SSD NolLoad

EIDETICOM COPYRIGHT 2024

G ciner

 (Consider a test to use the new
Userspace interface

* Generate traffic using the DMA

engines of the SSDs targeting
the NoLoad CMB using
P2PDMA

* FIO will generate the traffic

* We will send Read commands to
the SSDs with the output data
buffer being the NoLoad CMB
(via P2PDMA)

* To enable P2PDMA userspace
with FIO we simply change the
iomem variable as shown below:

~/FI0 % cat p2p-read.fio
[global]
runtime=1h
time based=1
group_reporting=1
itoengine=L1ibaio
bs=1M
1omem=mmapshared: /sys/class/nvme/nvme?/device/p2pmem/allocate
1odepth=16
direct=1
zero_buffers=1

[p2pmem-read]
rw=read
numjobs=16

G

s| epeTicom

Testing the Framework — SSD <-> SSD Results

18

= = = =
o N D (@)

0e]

Throughput (GiB/s)

B RandWrite ™ RandRead

EIDETICOM COPYRIGHT 2024

G cneTicom

P2PDMA was able to saturate
the NoLoad PCle bus (gen4x8)

No host DRAM usage

Verified using built-in NoLoad
counters

Performance was identical using
P2PDMA or using host DRAM

C

| eeTi

P2PDMA Use Case — SSD <-> Accelerator Compression G cineTicom

4th Gen Xeon

Host
Application

NoLoad® Platform
Intel® Agilex™ FPGA

P

Accelerator

EIDETICOM COPYRIGHT 2024

NVMe

(G

NVMe Control Path

s NVMe Data Path

C

3| emeri

P2PDMA Use Case — SSD <-> Accelerator Decompression G cineTicom

NoLoad® Platform
Intel® Agilex™ FPGA

4th Gen Xeon

P

Accelerator

Host
Application

EIDETICOM COPYRIGHT 2024

NVMe

(G

NVMe Control Path

s NVMe Data Path

| emeTicom

N
(93]

P2PDMA Usecase NIC Data Capture

G cneTicom

Traditional NIC Data Capture Path

Traditional NIC to
Storage Data Path

EIDETICOM COPYRIGHT 2024

Consider the Traditional NIC data capture
with a (many) SSDs and a NIC on the
PCle bus

2| €peT

P2PDMA Usecase NIC Data Capture G cneTicor

Traditional NIC to
Storage Data Path

" NIC

Traditional NIC Data Capture Path

* Consider the Traditional NIC data capture
with a (many) SSDs and a NIC on the
PCle bus

1. Data comes in on the NIC and is sent via
DMA to the host DRAM where 1t 1s
released to the application.

EIDETICOM COPYRIGHT 2024

x| epeT

P2PDMA Usecase NIC Data Capture G cineT

Traditional NIC Data Capture Path

Traditional NIC to * Consider the Traditional NIC data capture
Storage Data Path with a (many) SSDs and a NIC on the
PCle bus

1. Data comes in on the NIC and is sent via
DMA to the host DRAM where 1t 1s
released to the application.

2. The application performs some process
on the data (i.e. compression)

" NIC

EIDETICOM COPYRIGHT 2024

x| eper

P2PDMA Usecase NIC Data Capture

G ciner

Traditional NIC Data Capture Path

Traditional NIC to
Storage Data Path

EIDETICOM COPYRIGHT 2024

Consider the Traditional NIC data capture
with a (many) SSDs and a NIC on the
PCle bus

Data comes in on the NIC and is sent via
DMA to the host DRAM where 1t 1s
released to the application.

The application performs some process
on the data (i.e. compression)

The application then writes the data to
the storage SSD

5| emeTicom

P2PDMA Usecase NIC Data Capture

NIC to Storage Data Path
with NoLoad and P2PDMA

PCle

SSD NolLoad

G cneTicom

NIC Data Capture Path w/ NoLoad P2P

EIDETICOM COPYRIGHT 2024

Consider a setup with SSDs, a NoLoad
CSP Accelerator with compression, and a

high speed NIC

2| epeT

P2PDMA Usecase NIC Data Capture G cneTicor

NIC Data Capture Path w/ NoLoad P2P

* Consider a setup with SSDs, a NoLoad
CSP Accelerator with compression, and a
high speed NIC

1. Data is sent via DMA to the CMB on
NoLoad from the NIC (via P2PDMA)

NIC to Storage Data Path
with NoLoad and P2PDMA

SSD NolLoad NIC

EIDETICOM COPYRIGHT 2024

3| epeT

P2PDMA Usecase NIC Data Capture

NIC to Storage Data Path
with NoLoad and P2PDMA

G cneTicor

NIC Data Capture Path w/ NoLoad P2P

* Consider a setup with SSDs, a NoLoad

CSP Accelerator with compression, and a
high speed NIC

1. Data is sent via DMA to the CMB on
NoLoad from the NIC (via P2PDMA)

2. NoLoad compresses the data at line rate
(100 Gbps ingest)

EIDETICOM COPYRIGHT 2024

s| eper

P2PDMA Usecase NIC Data Capture

G ciner

NIC Data Capture Path w/ NoLoad P2P

NIC to Storage Data Path
with NoLoad and P2PDMA

EIDETICOM COPYRIGHT 2024

Consider a setup with SSDs, a NoLoad

CSP Accelerator with compression, and a
high speed NIC

Data is sent via DMA to the CMB on
NoLoad from the NIC (via P2PDMA)

NoLoad compresses the data at line rate
(100 Gbps ingest)

Data 1s sent via DMA to the SSD storage

€ P2PDMA Use Case — NIC Data Capture G cineT

Benefits

* Access to inline acceleration (Compression)

* Eliminates any DRAM bottlenecks
 Reduces CPU load by offloading compression

» Lower latency to the SSD (due to dedicated compression hardware)

| emeri

31 EIDETICOM COPYRIGHT 2024

s| emeTicom

Other Possible Applications

NN
”[“ o) @ ||||“|

) 2 e
uM’IZl'

L
\

COLLECT & CAPTURE

EIDETICOM COPYRIGHT 2024

G cneTicom

Al applications

* Feeding a training engine or
lowering the latency of inference

Data analytics/analysis

* Hardware offload (or network
offload) of analytics

Data capture/collection

» Direct NIC to storage
connection

* Opensource equivalent to
GPUDirect-to-Storage

Any connection where a transfer
between two PCle devices exists

| emeri

33

Summary G cnerT

P2PDMA Status
 P2PDMA is an open-source upstream framework for peer-to-peer transactions

« Userspace interface has been upstreamed into Linux v6.2

* Asof Ubuntu 24.04 LTS, P2ZPDMA 1s now enabled by default on all deployments (along with the
userspace interface)

P2PDMA Testing
 Showed full bandwidth P2PDMA traffic

« P2PDMA can be tested with minimal application changes
* Using FIO or even perftests like ib_read_bw*

Use Cases

« P2PDMA is an excellent framework when considering the data capture use case when paired with a
computational storage accelerator such as the NoLoad compression

» Lower overall latency is achieved with hardware acceleration
* Improved CPU efficiency is observed

*Currently being upstreamed

EIDETICOM COPYRIGHT 2024

C

2| epeTi

Next Steps G cineT

* Complete support into upstream RDMA framework

* Continue pushing companies for p2pdma integration (i.e. NICs, GPUs, Accelerator Cards,
etc)

« Upstream support in drivers

« Continue to integrate test infrastructure into modern CPUs and motherboards

EIDETICOM COPYRIGHT 2024

C

s | epeT

For More Information G cineT

* Check out our latest P2PDMA blog posts for more
information

EIDETICOM COPYRIGHT 2024

	Enabling Peer-to-Peer Traffic with NoLoad® NVMe Computational Storage and P2PDMA and Examining Real World Use Cases
	Outline
	Why P2PDMA?
	Introduce Peer-to-Peer Transfers (P2PDMA)
	What is Peer-to-Peer (P2P)?
	NVMe Controller Memory Buffer (CMB)
	NoLoad® Computational Storage Processor
	P2PDMA Recent Milestones
	P2PDMA Integration – Kernelspace Applications
	P2PDMA Integration – Userspace Applications
	P2PDMA Integration – Userspace Example
	P2PDMA Integration – Userspace Example
	P2PDMA Integration – Userspace Example
	P2PDMA Integration – Userspace Example
	P2PDMA Integration – Userspace Example
	P2PDMA Integration – Userspace Example
	Testing the Framework – SSD <-> SSD
	Testing the Framework – SSD <-> SSD
	Testing the Framework – SSD <-> SSD
	Testing the Framework – SSD <-> SSD Results
	P2PDMA Use Case – SSD <-> Accelerator Compression
	P2PDMA Use Case – SSD <-> Accelerator Decompression
	P2PDMA Usecase NIC Data Capture
	P2PDMA Usecase NIC Data Capture
	P2PDMA Usecase NIC Data Capture
	P2PDMA Usecase NIC Data Capture
	P2PDMA Usecase NIC Data Capture
	P2PDMA Usecase NIC Data Capture
	P2PDMA Usecase NIC Data Capture
	P2PDMA Usecase NIC Data Capture
	P2PDMA Use Case – NIC Data Capture
	Other Possible Applications
	Summary
	Next Steps
	For More Information

