SNIA DEVELOPER CONFERENCE

=SDC

BY Developers FOR Developers

September 16-18, 2024
Santa Clara, CA

Host Addressable SLM

NVMe and CXL Collaborating

Bill Martin and Jason Molgaard

Speakers

Bill Martin Jason Molgaard

SANMSUNG (Z) SOLIDIGM.
2| ©2024 SNIA. All Rights Reserved. : S D @

Agenda |

« NVMe®TP4184 Host Addressable SLM

» Computational Storage: A Use for Host Addressable SLM
« Combining NVMe® and CXL® Technologies

« Use Cases

3| ©2024 SNIA. All Rights Reserved. g S D @

NVMe® TP4184
Host Addressable SLM

Why Provide Host Addressable SLM?

. glVMe devices currently provide host accessible memory in the form of
LM

* Accessing this memory via a memory protocol will

Be more efficient

Allow cache coherency of that memory

Allow peer-to-peer communication using a memory model
Eliminate a context switch

« Computational Storage Use

« Computational Storage Drives have more host accessible memory than a traditional
Storage Device

« Benefits from peer-to-peer communication (more on this later)

* Why not CMB/PMR?

* No mechanism to specify a location in CMB/PMR to the device

5] ©2024 SNIA. All Rights Reserved. gl S D @

Host Addressable SLM — NVMe® TP4184

« NVMe TP4184 is in the Architecture Definition phase

 SLM is addressed at a Host Physical Address (HPA)
- PCle BAR; or
CXL HDM

« SLM memory can have a virtual mapping for host applications
Host application does not have to switch contexts for SLM memory access

- SLM memory is accessible by the host and the device

« SLM can be read/written with:
Host Load/Store commands
CXL.mem commands

« Compute is triggered with Computational Programs commands
Utilizes the host addressable SLM

* Allows P2P data movement based upon HPA

« SLM s still accessible using the SLM Command Set Memory Read and Memory Write
commands

6 | ©2024 SNIA. All Rights Reserved. g s D @

Potential Config Flow for CXL® SLM

* NVMe device with CXL SLM is similar to a CXL Type 2
device

* Plan for a CXL Type 2 device is for the OS to do standard
PCle configuration f(e.g. allocating BAR space) and then
load driver CXL configuration using device’s PCI ID

. y\.lMe device with CXL SLM will use an enhanced NVMe
river

* Enhanced for CXL based SLM configuration

* Device will use existing NVMe Class Code and may use a new
Programming Interface (Pl) identifier to expose CXL
capabilities

* Device driver discovers device capabilities and calls OS CXL
core services for CXL Memory set up
* CXL core services offers kernel interfaces for the driver to set

up required CXL capabilities such as HDM decoders and
return necessary information (e.g. HPA range)

* Device CXL memory allocation is controlled by the NVMe driver
* Linux support for CXL Type 2 devices is not yet available

* Driver owns runtime management of Device CXL memory

7 | ©2024 SNIA. All Rights Reserved.

Per-Port High-Level Config Flow

* Host does PCle device

discovery/configuration

* Sets Device BAR space
* Load device driver

* Device driver performs

standard NVMe config

* Discovers SLM NS support

)

>

Yes

* Device driver requests CXL
Memory set up using Kernel

Interfaces

Kernel CXL Core Services

* Discovers CXL
capabilities

* Sets up HDM decoders

* Device Driver sets up

HPA<->SLM NS

for device memory to
HPA

* Returns HDM decoder
maps and memory
properties to Device

driver

=SDEC

Host — CXL® SLM Address Mapping

Host HPA Space

,,,,,
L

NVMe Subsystem
SLM NVMe I/0 Access method / > DM Decoders \\
| NSII?= 1] Offset | :’ (per NVMe Controller) !
: i Programmed by _ i
! Pointer g Device SLM Address Space ! Host CXL core driver i
==-JDNSBase o, 1 pmmmmmm------ : ' |
! |LHPABase | Size |
e Check ™
NSID 1: CXL SLM R S
1
App Allocated Range i 777777777777777777777777777777 : ox SLM .’:’PA
In SLM NSID =1 ! ' -
I 1
I 1
NSID 2: CXL SLM ' E
Notes: ! i
* One HDM Decoder can map to 1 or more | i
SLM namespaces with the same access i |
characteristics (coherency, UIO etc.) ! ! . ,"
* SLM namespaces requiring different ! | TTTTTTmTTmmeT .
access characteristics must use different '
HDM decoders NSID 3: SLM I/O0

-
‘‘‘‘‘‘

8 | ©2024 SNIA. All Rights Reserved.

I

1

SLM NSID 1

SLM NSID 2

CXL.Mem Load/Store access method

(\
[I
b ! toxesimval
'HostCPU ! Access I |
iAddress :
iTranslation; I App I
I I
|

HDM allocation in HPA space

77

=SDEC

Configuration of PCle BAR to SLM

* Device statically assigns one or more SLM Namespaces for PCle AR e AR Offoct/Lanath
BAR access * This may be part of CMB BAR space

* Device advertises BAR space needs which includes SLM usage

Host PCI driver discovers and

* BAR space for SLM NS access may be smaller than SLM NS size configures device PCl interface
* Sets up Device BAR base address
. . dsiz
* Host (PCI Driver) allocates Device BAR space as a normal part of . Cals Device Driver (NVMe)

device discovery/config

NVMe Driver determines device

* Host (NVMe Driver) manages available BAR space for SLM L onfisurtion sane onis
access by determlnlng . E?\ZCT::}dSSLM NS BAR access is
* NSID, SLM NS Offset, PCle BAR offset, Length present

* May be a contiguous range within CMB BAR

No

PCle
SLM BAR?

* Device maintains a mapping to translate PCle Address to SLM
(example shown on next slide)

NVMe Driver uses device supplied

* Application uses BAR range provided by driver to access SLM S NS ele BAR o
directly using PCle read/write operations

S o=SDE

9| ©2024 SNIA. All Rights Reserved.

Host — PCI BAR SLM Address Mapping

SLM NVMe I/O Access method
[nsiD=1] NS Offset |
T

NSID 1: PCle BAR

™\

App Allocated Range in

SLM NSID =1

NSID n: PCle BAR

App Allocated Range in
SLM NSID =2

NS Offset

N —m —m —m———— — A — =&

HPA->SLM Map
(per NVMe Controller)
Managed by
NVMe driver

nsiof |52 offsef Len

JBAR oftse Len

10 | ©2024 SNIA. All Rights Reserved.

Host HPA Space

BAR Offse!I

1
§

Device BAR

PCle sLim HPA

SLM NSID =1

App Allocated
HPA Range
SLM NSID = 1

SLMNSID =n

App Allocated
HPA Range
SLM NSID =n

2
{

PCle Load/Store Access method

{ — e — \

AT ! |
: "pcle sLm val
'HostcPu | Access | |
;Address
iTranslationi I App I
| '
SLM space in \ - ’
Device BAR

v

=SDEC

Computational Storage:
A Use for Host Addressable SLM

Computational Storage Architecture

Computational Storage Processor

Host1l | ..o

[I
Driver

]

Host n

TS I
Driver

U

Fabric (PCle, Ethernet, etc)

Memt] T1/0]

CAFDM I

Computational Storage Resource(s)

Device Memory

Computational Storage Processor (CSP)

12 | ©2024 SNIA. All Rights Reserved.

CSx = Computational Storage Device — CSP or CSD or CSA

>

Host 1

cs I
Driver

U

Computational Storage Drive

Host n

Cs I
Driver

I

Fabric (PCle, Ethernet, etc)

[memt| [1/0 |

Storage
Controller

Computational Storage Resource(s)

Resource Repository

Device Memory

Device Storage

Computational Storage Drive (CSD)

%

[I
Driver

Host 1

]

Computational Storage Array

Host n

[I
Driver

]

Fabric (PCle, Ethernet, etc)

[Memt]| | 1/0 |

Storage

Computational Storage Resource(s)

Controller

Resource Repository

Array (ARG LmaEw

Transparent, EDM

i Storage | SAERNA
'\‘ Access /" AFDM |+

[CSF

o " Y
Proxied %
Storage

H
‘\ Access ¢

Storage Device
or CSD

Storage Device
or CSD

Computational Storage Array (CSA)

>

=SDEC

A Deeper Dive of the CSx Resources

IMamt| | 1/0 |

Storage
Controller

Computational Storage Resource(s)

Device Memory

Device Storage

CSR - Computational Storage Resources are the resources
available in a CSx necessary for that CSx to store and execute a
CSF

CSF - A Computational Storage Function is a set of specific
operations that may be configured and executed by a CSE in a
CSEE

CSE - Computational Storage Engine is a CSR that is able to be
programmed to provide one or more specific operation(s)

CSEE - A Computational Storage Engine Environment is an
operating environment space for the CSE

Computational Storage Drive (CSD)

13 | ©2024 SNIA. All Rights Reserved.

FDM - Function Data Memory is device memory that is available
for CSFs to use for data that is used or generated as part of the
operation of the CSF

AFDM - Allocated Function Data Memory is a portion of FDM that
is allocated for one or more specific instances of a CSF operation

Resource Repository — Resources that are available but not

activated :s D @

NVMe® Computational Storage Basics

« Computational Programs command set
introduced Compute Namespace

* Subsystem Local Memory (SLM)
command set introduced Memory

Namespace

« Compute Namespace can access SLMe.
Namespace using a Memory Range Set

« CSE = Compute Engine
e CSF = Program

* Function Data Memory (FDM) = SLM

* Allocated FDM = Memory Range Set
« Device Storage = NVM Namespace

14 | ©2024 SNIA. All Rights Reserved.

NVMe Controller

3] |
2| |
1] J
0 |

Programs

Compute Namespace 2

NVM Subsystem

NVM Namespace 100
NVM Namespace 101

=SDEC

Combining NVMe® and CXL® Technologies

Benefits of CXL® Load/Store Access

- What does CXL bring to the table that benefits NVMe® technology?

* Provides coherent memory between a host and one or more devices with SLM
* Provides low latency, fine granularity path to access SLM

« CXL.mem provides direct Load/Store access to SLM

* Supports larger memory capacities

» How is this different from PCle® BAR Access?

« CXL allows both coherency with host memory and MMIO space - PCle BAR access only
allows host Load/Store access over PCle using uncached MMIO space

« CXL provides coherency for device access to host memory

» CXL protocol is more efficient than PCle memory access protocol
CXL enables lower latency and higher throughput
CXL protocol has less strict ordering rules than PCle memory access protocol

« CXL allows Peer-to-Peer communication using CXL.mem instead of MMIO access

16 | ©2024 SNIA. All Rights Reserved. e S D @

Benefits of Coherency

 All devices perceive the same view of memory
 Memory viewed between devices is consistent

 All devices perceive the same view of shared data
 Data is up-to-date

* Devices and hosts can push data to each other or pull data from each other
 This includes device-to-device communication

* Avoids or reduces copies that can grow stale

17 | ©2024 SNIA. All Rights Reserved. g S D @

Use Cases

Use Case 1: Data Post-Processing (Before writing to storage)

* Value Proposition Host
* Avoid copying data using DMA from/to Host Memory ST T,
* Lower latency CXL® based direct Load/Store access, especially for small input data ! . E
. . : CPU Cores] !
« Configuration ! 4 g Host :
Host Coherent HPA S ! — = Local |
« Input Data Buffer is in host addressable SLM memory address space ostmoneren pace ! | ICPUCach 8 Memory !
« Output Data Bufferis in SLM | T |
| | C’(L.lo/CXL.m m| !
« Example Use Case H
. . . > TGV Ty T
I
1. Application writes (Store) Input Data Buffer using CXL.mem y % 5/7, 12/4
= Some or all data may reside in Host Cache on completion E E ,.——t'f '''''' ~<.
; S (I, CXLFabric >
2. Host issues NVMe® Execute Program command to Compute S r: _____ -
yorunn Rl R E R ST,
Namespace > 1y
, I
3. Compute Namespace Operates on data in Input Data Buffer and Store '| —
. CXL.10 . edia
stores results in Output Data Buffer \ S M T o
i D Coh Eng]
= Uses CXL Bl Snoop protocol to keep Host Cache coherent with Input Data Buffer < g "‘;‘;tﬁef‘a | \\
] g ompute L~
4. CQE is posted for the Compute Namespace ? 2 : 7 NS /
. S v o—— 13
5. Host issues NVMe Copy command to copy data from Output Data < ~—#[Output Data Buffer]
Buffer to Storage Media LN AT 6
(SLM NS 2: NVMe
. . . CXL.io/NVMe
6. Data is copied to Storage Media from Output Data Buffer aloiniy l-» Storage Media
. oca
7. CQE is posted for the NVM Namespace —_— Computational Storage Drive

19 | ©2024 SNIA. All Rights Reserved. g s D @

Use Case 2: Peer Data Processing

Value Proposition e Host .
. Bypass data movement through host memory ,’/ \‘,
1 1
- Configuration Host Coherent HPA Space ! CPU Cores l
g .
! 6] Host 1
. Data resides in peer device and is moved to Input Data Buffer E % Local !
| ache 3 |
. Output Data Buffer is in host addressable SLM : - Memory |
1 1
- Example Use Case z Pg-io/CXLmekn !
. . . - S \\ I /I
1. Host issues NVMe® Read command to Drive B with the g2 'I _________ ! R ‘
. . . . I —
destination is Input Data Buffer on Drive A g | 'mputData Ifa6 1
S| Buffer 7/9 4" e U
2. Data is transferred P2P from Drive B to Drive A S = —=7 CXL Fabric B
Output Data f" - - | S
. f - - === T
3. CQE is posted for READ command e '//’ 2 RN i1/3
. I
4. Host issues NVMe Execute Program command to Compute e — “II 1
. nput Data . - 1 -
Namespace on Drive A g Suﬁer cxXLIO ' CXLMem | SLM Media HLid CXL.Mem | SLM Media
5. Compute Namespace on Drive A operates on data in Input 3 £ [Guutoats \ \‘ Host Addressabl L Host Aderessabl
: =
Data Buffer and stores results in Output Data Buffer 5 |2 W\ == Iy Compute
6. CQE is posted for the Compute Namespace CXL.mem \‘ I ¥
Host issues NVMe Copy command to copy data from : ' ouput oot Bt NEMNS | fstm Ns [utout te Bufer]
- Py Py CXL.io/NVMe NVM N$”TsLm NS 3
Output Data Buffer to Storage Media - 'CS;L‘ I" - !
OCa
8. Data is copied to Storage Media from Output Data Buffer Storage Media Storage Media
Computational Storage Drive ‘A’ Computational Storage Drive ‘B’

9. CQE is posted for the NVM Namespace

20 | ©2024 SNIA. All Rights Reserved. g s D @

-

Use Case 3: Data Post-Processing with a Standard SSC

* Value Proposition ~_ _Host
* Bypass data movement through Host memory I/' \\l
« Configuration | |
1 Host :
* Input Data Buffer is in host addressable SLM memory address space Host Coherent HPA Space i % L:CSa, !
« Output Data Buffer is in host addressable SLM memory address space i z Memory i
- Example Use Case ! |
1. Application writes (Store) Input Data Buffer using CXL.mem . L
= Some or all data may reside in Host Cache on completion - % _____
2. Host issues NVMe® Execute Program command to Compute g= -7y T
© ‘. ™~ CXL Fabric)
Namespace 8 p o \ A Y W -
3. Compute Namespace operates on data in Input Data Bufferand | app t o (P2P) 6\
stores results in Output Data Buffer 1/ \
= Uses CXL Bl Snoop protocol to keep Host Cache coherent with Input Data Store ptieto) SIM Media
Buffer and Output Data Buffer \ N F SIM NS: CXL
. Input Data
4. CQE is posted for Compute Namespace g Buffer v | l
5. Host generates 10 Write to SSD NVM Namespace > 2 [Touputoan NN \
= Data Pointer points to Output Buffer in SLM (HDM) = Buffer s
- - OutputData]
6. SSD uses PCle® UIO for direct P2P from HDM space and writes [Outout Dot Buffe]
to storage media CXL.mem STORAGE NVM NS
—
. . L) CXL.io/NVMe
Since output buffer is in CXL HDM space, UIO can’t use BAR space forP2P =72 VVE > Standard SSD Computational Storage Processor
7. CQE is posted for NVM Namespace CSD Local
—

21| ©2024 SNIA. All Rights Reserved. g s D @

Use Case 4: Data Pre-Processing (before sending to host)

* Value Proposition
» Avoid copying data using DMA from/to Host Memory

» Lower latency CXL based direct Load/Store access,
especially for small output data

« Configuration
* |Input Data Buffer is in SLM
» QOutput Data Buffer is in host addressable SLM

- Example Use Case

Host issues NVMe Memory Copy command to SLM NS

Data copied from NVM NS to Input Data Buffer

CQE is posted for SLM NS

Host issues NVMe Execute Program command to Compute NS

Compute NS operates on data in Input Data Buffer and stores
results in Output Data Buffer

= Uses CXL Bl Snoop protocol to keep Host caches coherent
with Output Data Buffer

6. CQE is posted for Compute NS

7. Application reads (Id/st) Output Data Buffer using CXL.mem
22 | ©2024 SNIA. All Rights Reserved.

o kb=

Host Coherent HPA Space

Host
Local Memory

App

Load

Output Data
Buffer

SLM
CXL Memory

CXL.mem
—

CXL.io/NVMe
—_———_——

CSD Local
——-

Host
- \\
| |
i CPU Cores] :
=) Host I
i ‘pr z Local |
a 1
i :C' Cach 8 S |
i 1
1
i | kL jo/cXL.m m| |
\\ I !
——————— f—l————_i___________________'
I |
1/3, 14/6 |7
- -=" I -"‘-..__‘\
‘ I QXL Fabric R
SN)
I 1
I |
|
XLIo, | CXL.Mym | SLM Media
NVMe 'I/Fy SLM NSL: CXL
| m
‘ ‘\ Compute) Output Data Bufferl
\ NS /
w— |5
NVM NS L semses | Hfinput Data uffer |

SLM NS 2: NVMe

Storage Media

Computational Storage Drive

=SDEC

Summary and Next Steps

- CXL® and NVMe® technologies can be used simultaneously
« Coherent memory between a host and one or more devices with SLM
 CXL.mem provides direct Load/Store access to SLM

. TP4184

« Enables Host Addressable SLM
Both CXL and PCle® BAR access methods

* Currently in the architecture phase

» Looking Ahead

CXL and NVMe Computational Storage are on trajectories that will intersect
Enhancing NVMe SLM to support CXL is a step to enable convergence/collaboration

23 | ©2024 SNIA. All Rights Reserved. e S D @

What do you think Computational Storage is

= Please complete a survey on your view of Computational Storage

1) What is Computational Storage? (Multiple Choice)

2) How would you use computational storage? (Fill in the blank)

3) What is the future and evolution of computational storage”? (Multiple Choice)
)

4) Any other thoughts/ideas on computational storage?

24 | ©2024 SNIA. All Rights Reserved.

- .- s T — ———
. i /
e e ______..-::' 2o L
' : i i
> : <7
) _.‘_F: e ; - ~ ____.-"' -

Please take a moment to rate this session.

Your feedback is important to us.

25| ©2024 SNIA. All Rights Reserved. g S D @

	Host Addressable SLM
	Speakers
	Agenda
	Slide Number 4
	Why Provide Host Addressable SLM?
	Host Addressable SLM – NVMe® TP4184
	Potential Config Flow for CXL® SLM
	Host – CXL® SLM Address Mapping
	Configuration of PCIe BAR to SLM
	Host – PCI BAR SLM Address Mapping
	Slide Number 11
	Computational Storage Architecture
	A Deeper Dive of the CSx Resources
	NVMe® Computational Storage Basics
	Slide Number 15
	Benefits of CXL® Load/Store Access
	Benefits of Coherency
	Slide Number 18
	Use Case 1: Data Post-Processing (Before writing to storage)
	Use Case 2: Peer Data Processing
	Use Case 3: Data Post-Processing with a Standard SSD
	Use Case 4: Data Pre-Processing (before sending to host)
	�Summary and Next Steps
	What do you think Computational Storage is
	Please take a moment to rate this session.

