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AI workloads in Cloud environments have 
a performance challenge
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Problem: SDS performance with AI workloads in the Cloud

 Low Performance: SDSs often 
struggle to deliver the required 
performance for modern Cloud-
based AI workloads. 
 Lack of Shared Volumes: 

SDS solutions rarely offer high 
performance shared volume 
support.
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Slow Storage Means GPU Underutilization 
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Our Goals

Develop performant block device.
Block device must deliver high-

performance when working under a 
virtualized parallel file system.
Pass this solution through cloud 

environments without taking a performance 
hit with virtualization.
Deliver random and sequential performance 

for AI workloads.
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xiRAID Opus: optimal solution for block 
device in Cloud environments
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xiRAID Opus (Optimized Performance in User Space)

Engine designed for high-performance 
storage data paths in virtualized 
environments.
1. Creation of RAID-protected volumes.
2. Provisioning of volumes to VMs.
3. Performance Enhancements:

 Polling: Reduces latency by actively 
checking for I/O completions.

 Zero-Copy: Eliminates unnecessary data 
copying, increasing throughput.

Measured 
single drive 
performance

2x RAID5 
theoretical 
performance

XiRAID 2x 
RAID5 
performance

Efficiency

4K Random 
Read (M IOPS) 2,7 65 65 100%

4K Random 
Write (M IOPS) 0,7 8 8 100%

Sequential Read 
(GB/s) 14 336 310 92%

Sequential Write 
(GB/s) 6,75 149 144 97%

xiRAID demonstrates world-record performance with 24 Kioxia 
CM7 PCIe 5 NVMe SSD drives
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xiRAID Opus Architecture
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Most efficient method of block device 
delivery in virtualized environments.
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Methods for delivery of block device to VMs

VIRTIO
(1 IOT and Multiple IOT)

VDUSE

vhost-user-blk

ublk
(limited virtual environment 

support)
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Comparing the technologies

 xiRAID Opus RAID 5 (23+1 drives) vs MDRAID RAID 0 (24 drives)
Single Virtual Machine: 32 VCPUs, 32GB of RAM
Rocky Linux 9, kernel-lt(6.10)

FIO v 3.36
 4k random reads, AIO, direct_io
 full stripe writes, AIO, direct_io
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Passing shared block volume to 1 VM - Random read
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Passing shared block volume: Methods Comparison
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Why we chose vhost-usr-blk = Conclusions

xiRAID Opus using our implementation of vhost-usr-blk is the only 
option to deliver a high-performance block device to VMs.

Developed multithreading interface for VHOST User BLK.
Reused best practices from SPDK.
Optimized utilization of specific CPU features from AMD and Intel.
Optimized performance even for a single virtual machine and a single 

block device.
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How xiRAID Opus accelerates parallel file 
systems in cloud environments
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Architectures that we are working on

1. Lustre solution 2. pNFS solution
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Xinnor Lustre Solution for Cloud 
Environments
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Lustre in Cloud Environments

 Lustre is a well–known FS that 
is primarily used for HPC 
workloads 
Provides good scalability and 

performance for data intensive 
workloads 
Provides HA over shared 

storage 



20 | ©2024 SNIA. All Rights Reserved. 

Testing 
Environment 
Details
CPU: 64-Core Processor per 
node (AMD 7702P)
Memory: 256 GB RAM per 
Node
Networking: 1 x MT28908 
Family [ConnectX-6] per node
Drives: 24x KIOXIA CM6-R 
3.84TB (Gen 4)
Aggregated drive performance 
per node:
• 9M IOps 4k RR
• 3M IOps 4k RW
• 70 GBps 128k SW, SR
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Lustre Solution Performance

Sequential read 1M, 32 jobs:
 with xiRAD Opus: 44 GB/s

Sequential write 1M, 32 jobs: 
 with xiRAD Opus: 43 GB/s

These results can be achieved 
with multithreaded vhost-user-blk 
only! 
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Reducing complexity of Lustre administration

Virtiofs allows to share mounted FS 
on the host with VMs
No client software or specialized 

networking configuration needed
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Virtio FS Upsides = simplicity

We can hide all the complexity of parallel file system setup from the client behind VIRTIOFS!

virtio-fs: sharing a directory tree between host and VMs
virtiofsd: vhost-user device daemon written in Rust
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Xinnor Tuned Virtio FS = performance results
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Outcomes = Xinnor Lustre Solution can perform

1. Performance:
 Even with only two virtualized OSS Lustre delivers strong results for sequential and random I/O operations (AIO).
 It is essential to have high-performance block devices passed through to the OSS and MDS virtual machines.
 xiRAID Opus solves this challenge.

2. Skill requirements:
 Requires a high level of expertise to configure the system and client VMs.
 VirtioFS can reduce complexity:

 For use-cases that require only sequential workload patterns.

3. Xinnor can deliver Lustre solution for Cloud Environments.

Reach out to Xinnor for a POC.
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Our vision of the future: pNFS
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pNFS Block Layout

 Allows to build high-performance and 
scalable data volumes
 Clients reads and writes directly to 

volumes
 Data and metadata paths are 

separated
 No need for third-party client 

Software 
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pNFS Architecture in Cloud Environments
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pNFS with and without xiRAID Opus

Sequential read 1M, 32 jobs:
 without xiRAID Opus: 34,8 GB/s
 with xiRAID Opus : 47 GB/s

Sequential write 1M, 32 jobs:
 without xiRAID Opus: 32,7 GB/s
 with xiRAID Opus: 46 GB/s

pNFS w/o xiRAID Opus pNFS w/ xiRAID Opus

4 M

Random read, 32 jobs, IOps

3,5 M

3 M

2,5 M

2 M

1,5 M

0,5 M

0
1 4 16 128

1 M

IO 
Depth

Random write, 32 jobs, IOps
1,5 M

1,25 M

1 M

0,75 M

0,25 M

0
1 4 16 128

0,5 M

IO 
Depth



30 | ©2024 SNIA. All Rights Reserved. 

pNFS vs Lustre - accelerated by Xinnor solutions

Sequential read 1M, 32 jobs:
 Lustre: 44 GB/s
 pNFS: 47 GB/s

Sequential write 1M, 32 jobs:
 Lustre: 43 GB/s
 pNFS: 46 GB/s

Lustre w/ 
xiRAID Opus

pNFS w/ 
xiRAID Opus
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pNFS in Cloud Environments - Conclusions

Best Option with Proper Configuration
 Supports scalability to tens or even hundreds of gigabytes per second with minimal 

resource usage.

High Performance
 Sequential and random Small Block operations, with minimal latency due to direct 

interaction with the block device.

No 3rd party client software required

Drawbacks:
 Open Source MDS is not production-ready and can only be used for POCs.

We are looking for partners to make pNFS production ready.
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Conclusions
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Xinnor has solutions for AI in Cloud Environments

xiRAID Opus and Xinnor Lustre Solution are both ready to be 
deployed in Cloud environments as a high-performance solutions 
for AI workloads.

 Lustre Enables High-Intensity AI Workloads
 New versions excel in Asynchronous Small Block I/O performance

 The VHOST-User-BLK interface, especially with Multi-IO Thread 
support, allows the direct passthrough of high-performance block 
volumes into virtual machines.
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Backup
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Backup
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Backup
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VirtioFS requires additional CPU cores for each VM
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Outcomes of VirtioFS addition to Lustre

Simplified Configuration:
 VirtioFS eliminates the need for client-side settings within virtual machines. 

Performance Considerations:
 Tuning of VirtioFS on the host side is required. 
 Dedicating extra CPU cores that are isolated from the ones used by the virtual machines is necessary.
 Increased cost of data access.

Random I/O Performance:
 Poor small random I/O performance.

VirtIO FS is suitable for workloads that handle large volumes of data, where frequent Small IO operations are not 
required. 

However, to achieve high performance, properly tuned Lustre OSS/OST and a high-performance backend are 
essential to efficiently handle the workload.
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vhost-usr-blk

 Local block I/O interface
 Userpace
 Zero-copy (shared memory)
 Notifications and polling

Linux, BSD, and macOS
Implementations started in 2017
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VDUSE: a software-defined datapath for virtio

 vDPA device in userspace 
(VDUSE) is an emerging approach 
for providing software-defined 
storage and networking services to 
virtual machine (VM) and container 
workloads. 
 The vDPA (virtio data path 

acceleration) kernel subsystem is 
the engine behind VDUSE. 

VDUSE enables you to easily implement a software-emulated vDPA device in 
userspace to serve both VM and container workloads.

https://www.redhat.com/en/blog/hardening-virtio-emerging-security-usecases
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VirtIO - True multi-threading in QEMU 9
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VirtIO - True multi-threading in QEMU 9
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Vhost-usr-blk Opus vs SPDK vs QSD implemetations
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VIRTIO vs IO_URING PT

Workload VIRTIO, MIOT, AIO=native Io_uring PT

Random read 1J/1IOD 12.4k IOps 147 µs 99.9 lat 12.7k IOps 133 µs 99.9 lat

Random read 32J/32IOD 870k IOps 2681 µs 99.9 lat 920k IOps 1647 µs 99.9 lat
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vDUSE, mdraid vs sigle drive vfio_pci

Workload VDUSE 1 drive, vfio_pci VDUSE, mdraid 0

Random read 1J/1IOD 10.2k IOps 145 µs 99.9 lat 9.1k IOps 165 µs 99.9 lat

Random read 32J/32IOD 70k IOps 435 µs 99.9 lat 225k IOps 2440 µs 99.9 lat
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Lustre Solution Performance

Sequential read 1M, 32 jobs:
 without xiRAID Opus: 44 GB/s
 with xiRAD Opus: 44 GB/s

Sequential write 1M, 32 jobs: 
 without xiRAID Opus: 44 GB/s
 with xiRAD Opus: 43 GB/s

These results can be achieved 
with multithreaded vhost-user-blk 
only! 
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fio configurations 1

-name=randtest -bs=4k –ioengine=libaio –direct=1 –iodepth={1,32} –
numjobs={1,32} –norandommap –filename=/dev/vda –group_reporting -
rw={randread,randwrite} -timebased=1 –runtime=600
-name=randtest_iou -bs=4k –ioengine=io_uring –fixedbufs=1 –hipri=1 –
registerfiles=1 –direct=1 –iodepth={1,32} –numjobs={1,32} –
norandommap –filename=/dev/vda –group_reporting -
rw={randread,randwrite} -timebased=1 –runtime=600
-name=seqRW -bs={1024k, 1472k, 1536k} –ioengine=libaio –direct=1 –
iodepth={1,32} –numjobs={1,8} –offset_increment=10% –
filename=/dev/vda –group_reporting -rw={read,write} -timebased=1 –
runtime=600
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fio configurations 2

 -name=randtest -bs=4k –ioengine=libaio –direct=1 –iodepth={1, 8, 16, 128} –
numjobs={16} –norandommap -directory=/mount –group_reporting -
rw={randread,randwrite} -timebased=1 –runtime=600 –size=50G
 -name=seqRW -bs={1024k, 1472k, 1536k} –ioengine=libaio –direct=1 –

iodepth={1,32} –numjobs={1,8} -directory=/mount -group_reporting -
rw={read,write} -timebased=1 –runtime=600 –size=50G
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QSD settings

taskset -ac 32-63  qemu-storage-daemon  --blockdev driver=raw,node-
name=md0,file.driver=host_device,file.filename=/dev/md0,cache.direct=o
n  --export type=vduse-blk,id=md0-export,node-
name=md0,writable=on,name=vduse-0,num-queues=32,queue-size=256

taskset -ac 32-63  qemu-storage-daemon --blockdev driver=nvme,node-
name=md0,driver=nvme,device=0000:01:00.0,namespace=2 --export 
type=vduse-blk,id=md0-export,node-
name=md0,writable=on,name=vduse-0,num-queues=32,queue-size=256
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virtiofs run parameters

taskset -ac 32-63 /usr/libexec/virtiofsd --socket-
path=/tmp/vhostqemu.sock -o source=/virtiofs/ --cache=metadata --allow-
direct-io --thread-pool-size=16 &
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VM run parameters 1

taskset -ca 0-31  /usr/libexec/qemu-kvm  \
-enable-kvm -cpu host\
-m 32G -object memory-backend-file,id=mem,size=32G,mem-
path=/dev/shm,share=on -numa node,memdev=mem \
-chardev socket,id=char0,path=/tmp/vhostqemu.sock2 -device vhost-
user-fs-pci,queue-size=1024,chardev=char0,tag=myfs \
-smp 32 \
-hda ${VMDISK_QCOW2} \
-netdev user,id=net0,net=192.168.0.0/24,dhcpstart=192.168.0.9 \
-device virtio-net-pci,netdev=net0  -vnc 0.0.0.0:2 --nographic
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VM run parameters 2

taskset -a -c 0-31 /usr/local/bin/qemu-system-x86_64  \
-enable-kvm -cpu host \
-m 32G -object memory-backend-file,id=mem,size=32G,mem-path=/dev/shm,share=on -numa 
node,memdev=mem \
-smp 32 \
-hda ${VMDISK_QCOW2} -drive if=none,id=drive0,cache=none,aio=native,format=raw,file=/dev/md127 \
-device '{"driver":"virtio-blk-pci","drive":"drive0","iothread-vq-
mapping":[{"iothread":"my0","vqs":[0,1]},{"iothread":"my1","vqs":[2,3]},{"iothread":"my2","vqs":[4,5]},{"iothread":"my3
","vqs":[6,7]},{"iothread":"my4","vqs":[8,9]},{"iothread":"my5","vqs":[10,11]},{"iothread":"my6","vqs":[12,13]},{"iothrea
d":"my7","vqs":[14,15]},{"iothread":"my8","vqs":[16,17]},{"iothread":"my9","vqs":[18,19]},{"iothread":"my10","vqs":[20
,21]},{"iothread":"my11","vqs":[22,23]},{"iothread":"my12","vqs":[24,25]},{"iothread":"my13","vqs":[26,27]},{"iothread"
:"my14","vqs":[28,29]},{"iothread":"my15","vqs":[30,31]}]}’ \
-netdev tap,id=net0,ifname=tap0,script=no,downscript=no -object iothread,id=my0 -object iothread,id=my1 -object 
iothread,id=my2 -object iothread,id=my3 -object iothread,id=my4 -object iothread,id=my5 -object iothread,id=my6 
-object iothread,id=my7 -object iothread,id=my8 -object iothread,id=my9 -object iothread,id=my10 -object 
iothread,id=my11  -object iothread,id=my12 -object iothread,id=my13 -object iothread,id=my14 -object 
iothread,id=my15 \-device virtio-net-pci,netdev=net0 -vnc 0.0.0.0:1
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VM run parameters 3

taskset -ac 0-31 /usr/local/bin/qemu-system-x86_64  \
-enable-kvm -cpu host -m 32G -smp 32 \
-m 32G -object memory-backend-file,id=mem,size=32G,mem-
path=/dev/hugepages,share=on -numa node,memdev=mem \
-hda ${VMDISK_QCOW2} \
-vnc 0.0.0.0:2 \
-device vhost-vdpa-device-pci,vhostdev=/dev/vhost-vdpa-0,queue-
size=256
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VM run parameters 4

taskset -a -c 0-31 /usr/libexec/qemu-kvm \
-enable-kvm -cpu host\
-m 32G -object memory-backend-file,id=mem,size=32G,mem-
path=/dev/hugepages,share=on -numa node,memdev=mem  \
-smp 32 \
-hda ${VMDISK_QCOW2} -chardev socket,id=char1,path=/opt/xiraid/bin/xnr_conf/sock/r1 -
device vhost-user-blk-pci,id=blk0,chardev=char1,num-queues=32,queue-size=256 \
-netdev socket,id=net0,connect=127.0.0.1:1234 \
-device virtio-net-pci,netdev=net0 \
-netdev user,id=net1,net=192.168.0.0/24,dhcpstart=192.168.0.9 \
-device virtio-net-pci,netdev=net1 \
-vnc 0.0.0.0:4 --nographic
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