
September 16-18, 2024
Santa Clara, CA

High-Performance Block
Volumes in Virtual Cloud

Environment
Solutions and Performance Analysis

Presented by Sergey Platonov and Heinrich von Keler

2 | ©2024 SNIA. All Rights Reserved.

AI workloads in Cloud environments have
a performance challenge

3 | ©2024 SNIA. All Rights Reserved.

Problem: SDS performance with AI workloads in the Cloud

 Low Performance: SDSs often
struggle to deliver the required
performance for modern Cloud-
based AI workloads.
 Lack of Shared Volumes:

SDS solutions rarely offer high
performance shared volume
support.

4 | ©2024 SNIA. All Rights Reserved.

Slow Storage Means GPU Underutilization

5 | ©2024 SNIA. All Rights Reserved.

Our Goals

Develop performant block device.
Block device must deliver high-

performance when working under a
virtualized parallel file system.
Pass this solution through cloud

environments without taking a performance
hit with virtualization.
Deliver random and sequential performance

for AI workloads.

6 | ©2024 SNIA. All Rights Reserved.

xiRAID Opus: optimal solution for block
device in Cloud environments

7 | ©2024 SNIA. All Rights Reserved.

xiRAID Opus (Optimized Performance in User Space)

Engine designed for high-performance
storage data paths in virtualized
environments.
1. Creation of RAID-protected volumes.
2. Provisioning of volumes to VMs.
3. Performance Enhancements:

 Polling: Reduces latency by actively
checking for I/O completions.

 Zero-Copy: Eliminates unnecessary data
copying, increasing throughput.

Measured
single drive
performance

2x RAID5
theoretical
performance

XiRAID 2x
RAID5
performance

Efficiency

4K Random
Read (M IOPS) 2,7 65 65 100%

4K Random
Write (M IOPS) 0,7 8 8 100%

Sequential Read
(GB/s) 14 336 310 92%

Sequential Write
(GB/s) 6,75 149 144 97%

xiRAID demonstrates world-record performance with 24 Kioxia
CM7 PCIe 5 NVMe SSD drives

8 | ©2024 SNIA. All Rights Reserved.

xiRAID Opus Architecture

9 | ©2024 SNIA. All Rights Reserved.

Most efficient method of block device
delivery in virtualized environments.

10 | ©2024 SNIA. All Rights Reserved.

Methods for delivery of block device to VMs

VIRTIO
(1 IOT and Multiple IOT)

VDUSE

vhost-user-blk

ublk
(limited virtual environment

support)

11 | ©2024 SNIA. All Rights Reserved.

Comparing the technologies

 xiRAID Opus RAID 5 (23+1 drives) vs MDRAID RAID 0 (24 drives)
Single Virtual Machine: 32 VCPUs, 32GB of RAM
Rocky Linux 9, kernel-lt(6.10)

FIO v 3.36
 4k random reads, AIO, direct_io
 full stripe writes, AIO, direct_io

12 | ©2024 SNIA. All Rights Reserved.

Passing shared block volume to 1 VM - Random read

0 µs

50 µs

100 µs

150 µs

200 µs

0

5

10

15

20

1 job/1 IO depth Random Read, K
IOPS / µs

99.9 latency
0 µs

500 µs

1,000 µs

1,500 µs

2,000 µs

2,500 µs

3,000 µs

0

1000

2000

3000

4000

32 jobs/32 IO depth Random Read,
K IOPS / µs

99.9 latency

xiRAID Opus (vhost-
user-blk)

xiRAID Opus
(NVMe/RDMA)

MDRAID
VDUSE

MDRAID VIRTIO
MVQ, aio=native

13 | ©2024 SNIA. All Rights Reserved.

0
1
2
3
4
5
6
7
8
9

1 job/1 IO depth Sequential write,
GBps

Passing shared block volume to 1 VM - Sequential write

0
10
20
30
40
50
60
70
80

8 jobs/32 IO depth Sequential write,
GBps

xiRAID Opus (vhost-user-blk) MDRAID
VDUSE

MDRAID VIRTIO MVQ,
aio=native

14 | ©2024 SNIA. All Rights Reserved.

Passing shared block volume: Methods Comparison

15.6

3210

15.9

3350

9.1

2040

1/1 random read

32/32 random read

Random read, K IOPS

7.9

69.6

5.7

24

1.9

12

1/1 sequential write

8/32 sequential write

Sequential write, GBps

xiRAID Opus (vhost-user-
blk)

xiRAID Opus
(NVMe/RDMA 200Gbit)

xiRAID Opus
(NVMe/TCP 200Gbit)

15 | ©2024 SNIA. All Rights Reserved.

Why we chose vhost-usr-blk = Conclusions

xiRAID Opus using our implementation of vhost-usr-blk is the only
option to deliver a high-performance block device to VMs.

Developed multithreading interface for VHOST User BLK.
Reused best practices from SPDK.
Optimized utilization of specific CPU features from AMD and Intel.
Optimized performance even for a single virtual machine and a single

block device.

16 | ©2024 SNIA. All Rights Reserved.

How xiRAID Opus accelerates parallel file
systems in cloud environments

17 | ©2024 SNIA. All Rights Reserved.

Architectures that we are working on

1. Lustre solution 2. pNFS solution

18 | ©2024 SNIA. All Rights Reserved.

Xinnor Lustre Solution for Cloud
Environments

19 | ©2024 SNIA. All Rights Reserved.

Lustre in Cloud Environments

 Lustre is a well–known FS that
is primarily used for HPC
workloads
Provides good scalability and

performance for data intensive
workloads
Provides HA over shared

storage

20 | ©2024 SNIA. All Rights Reserved.

Testing
Environment
Details
CPU: 64-Core Processor per
node (AMD 7702P)
Memory: 256 GB RAM per
Node
Networking: 1 x MT28908
Family [ConnectX-6] per node
Drives: 24x KIOXIA CM6-R
3.84TB (Gen 4)
Aggregated drive performance
per node:
• 9M IOps 4k RR
• 3M IOps 4k RW
• 70 GBps 128k SW, SR

21 | ©2024 SNIA. All Rights Reserved.

Lustre Solution Performance

Sequential read 1M, 32 jobs:
 with xiRAD Opus: 44 GB/s

Sequential write 1M, 32 jobs:
 with xiRAD Opus: 43 GB/s

These results can be achieved
with multithreaded vhost-user-blk
only!

4 M

Random read, 32 jobs, IOps

3,5 M

3 M

2,5 M

2 M

1,5 M

0,5 M

0
1 4 16 128

1 M

IO
Depth

Lustre w/ xiRAID Opus Lustre w/o xiRAID Opus

Random write, 32 jobs, IOps
1 M

0,75 M

0,25 M

0
1 4 16 128

0,5 M

IO
Depth

22 | ©2024 SNIA. All Rights Reserved.

Reducing complexity of Lustre administration

Virtiofs allows to share mounted FS
on the host with VMs
No client software or specialized

networking configuration needed

23 | ©2024 SNIA. All Rights Reserved.

Virtio FS Upsides = simplicity

We can hide all the complexity of parallel file system setup from the client behind VIRTIOFS!

virtio-fs: sharing a directory tree between host and VMs
virtiofsd: vhost-user device daemon written in Rust

24 | ©2024 SNIA. All Rights Reserved.

Xinnor Tuned Virtio FS = performance results

4 M
4k random reads, 32 jobs, IOps

3,5 M

3 M

2,5 M

2 M

1,5 M

0,5 M

0
1 4 16 128

1 M

IO Depth

Native Lustre client Virtio FS

Sequential read 1M, 32 jobs:
 Native Lustre client: 44 GB/s
 Virtio FS: 9 GB/s
 Tuned Virtio FS: 44 GB/s

Sequential write 1M, 32 jobs:
 Native Lustre client: 43 GB/s
 Virtio FS: 7 GB/s
 Tuned Virtio FS: 44 GB/s

Virtio FS tuning

25 | ©2024 SNIA. All Rights Reserved.

Outcomes = Xinnor Lustre Solution can perform

1. Performance:
 Even with only two virtualized OSS Lustre delivers strong results for sequential and random I/O operations (AIO).
 It is essential to have high-performance block devices passed through to the OSS and MDS virtual machines.
 xiRAID Opus solves this challenge.

2. Skill requirements:
 Requires a high level of expertise to configure the system and client VMs.
 VirtioFS can reduce complexity:

 For use-cases that require only sequential workload patterns.

3. Xinnor can deliver Lustre solution for Cloud Environments.

Reach out to Xinnor for a POC.

26 | ©2024 SNIA. All Rights Reserved.

Our vision of the future: pNFS

27 | ©2024 SNIA. All Rights Reserved.

pNFS Block Layout

 Allows to build high-performance and
scalable data volumes
 Clients reads and writes directly to

volumes
 Data and metadata paths are

separated
 No need for third-party client

Software

28 | ©2024 SNIA. All Rights Reserved.

pNFS Architecture in Cloud Environments

29 | ©2024 SNIA. All Rights Reserved.

pNFS with and without xiRAID Opus

Sequential read 1M, 32 jobs:
 without xiRAID Opus: 34,8 GB/s
 with xiRAID Opus : 47 GB/s

Sequential write 1M, 32 jobs:
 without xiRAID Opus: 32,7 GB/s
 with xiRAID Opus: 46 GB/s

pNFS w/o xiRAID Opus pNFS w/ xiRAID Opus

4 M

Random read, 32 jobs, IOps

3,5 M

3 M

2,5 M

2 M

1,5 M

0,5 M

0
1 4 16 128

1 M

IO
Depth

Random write, 32 jobs, IOps
1,5 M

1,25 M

1 M

0,75 M

0,25 M

0
1 4 16 128

0,5 M

IO
Depth

30 | ©2024 SNIA. All Rights Reserved.

pNFS vs Lustre - accelerated by Xinnor solutions

Sequential read 1M, 32 jobs:
 Lustre: 44 GB/s
 pNFS: 47 GB/s

Sequential write 1M, 32 jobs:
 Lustre: 43 GB/s
 pNFS: 46 GB/s

Lustre w/
xiRAID Opus

pNFS w/
xiRAID Opus

4 M

Random read, 32 jobs, IOps

3,5 M

3 M

2,5 M

2 M

1,5 M

0,5 M

0
1 4 16 128

1 M

IO
Depth

Random write, 32 jobs, IOps
1,5 M

1,25 M

1 M

0,75 M

0,25 M

0
1 4 16 128

0,5 M

IO
Depth

31 | ©2024 SNIA. All Rights Reserved.

pNFS in Cloud Environments - Conclusions

Best Option with Proper Configuration
 Supports scalability to tens or even hundreds of gigabytes per second with minimal

resource usage.

High Performance
 Sequential and random Small Block operations, with minimal latency due to direct

interaction with the block device.

No 3rd party client software required

Drawbacks:
 Open Source MDS is not production-ready and can only be used for POCs.

We are looking for partners to make pNFS production ready.

32 | ©2024 SNIA. All Rights Reserved.

Conclusions

33 | ©2024 SNIA. All Rights Reserved.

Xinnor has solutions for AI in Cloud Environments

xiRAID Opus and Xinnor Lustre Solution are both ready to be
deployed in Cloud environments as a high-performance solutions
for AI workloads.

 Lustre Enables High-Intensity AI Workloads
 New versions excel in Asynchronous Small Block I/O performance

 The VHOST-User-BLK interface, especially with Multi-IO Thread
support, allows the direct passthrough of high-performance block
volumes into virtual machines.

34 | ©2024 SNIA. All Rights Reserved.

Backup

35 | ©2024 SNIA. All Rights Reserved.

Backup

36 | ©2024 SNIA. All Rights Reserved.

Backup

37 | ©2024 SNIA. All Rights Reserved.

VirtioFS requires additional CPU cores for each VM

6.9

12

24

24

12

24

46

90

Thread pool size Sequential workloads, GBps Random workloads, K IOps

1

2

4

8

38 | ©2024 SNIA. All Rights Reserved.

Outcomes of VirtioFS addition to Lustre

Simplified Configuration:
 VirtioFS eliminates the need for client-side settings within virtual machines.

Performance Considerations:
 Tuning of VirtioFS on the host side is required.
 Dedicating extra CPU cores that are isolated from the ones used by the virtual machines is necessary.
 Increased cost of data access.

Random I/O Performance:
 Poor small random I/O performance.

VirtIO FS is suitable for workloads that handle large volumes of data, where frequent Small IO operations are not
required.

However, to achieve high performance, properly tuned Lustre OSS/OST and a high-performance backend are
essential to efficiently handle the workload.

39 | ©2024 SNIA. All Rights Reserved.

vhost-usr-blk

 Local block I/O interface
 Userpace
 Zero-copy (shared memory)
 Notifications and polling

Linux, BSD, and macOS
Implementations started in 2017

40 | ©2024 SNIA. All Rights Reserved.

VDUSE: a software-defined datapath for virtio

 vDPA device in userspace
(VDUSE) is an emerging approach
for providing software-defined
storage and networking services to
virtual machine (VM) and container
workloads.
 The vDPA (virtio data path

acceleration) kernel subsystem is
the engine behind VDUSE.

VDUSE enables you to easily implement a software-emulated vDPA device in
userspace to serve both VM and container workloads.

https://www.redhat.com/en/blog/hardening-virtio-emerging-security-usecases

41 | ©2024 SNIA. All Rights Reserved.

VirtIO - True multi-threading in QEMU 9

42 | ©2024 SNIA. All Rights Reserved.

VirtIO - True multi-threading in QEMU 9

43 | ©2024 SNIA. All Rights Reserved.

Vhost-usr-blk Opus vs SPDK vs QSD implemetations

16.5

11.0 11.2

0

500

1000

1500

2000

2500

3000

3500

0

2

4

6

8

10

12

14

16

18

4K Random Read
1/1, K IOPS / µs

3210

252 346

0

1000

2000

3000

4000

5000

6000

7000

8000

9000

0

500

1000

1500

2000

2500

3000

3500

4K Random Read
32/32, K IOPS / µs

7.8

5.1 4.8

Full Stripe write
1/1, GBps

69.6
64.7

26.0

Full Stripe write
8/32, GBps

xiRAID Opus vhost-usr-blk QSD spdk vhost-usr-blk latency

44 | ©2024 SNIA. All Rights Reserved.

VIRTIO vs IO_URING PT

Workload VIRTIO, MIOT, AIO=native Io_uring PT

Random read 1J/1IOD 12.4k IOps 147 µs 99.9 lat 12.7k IOps 133 µs 99.9 lat

Random read 32J/32IOD 870k IOps 2681 µs 99.9 lat 920k IOps 1647 µs 99.9 lat

45 | ©2024 SNIA. All Rights Reserved.

vDUSE, mdraid vs sigle drive vfio_pci

Workload VDUSE 1 drive, vfio_pci VDUSE, mdraid 0

Random read 1J/1IOD 10.2k IOps 145 µs 99.9 lat 9.1k IOps 165 µs 99.9 lat

Random read 32J/32IOD 70k IOps 435 µs 99.9 lat 225k IOps 2440 µs 99.9 lat

46 | ©2024 SNIA. All Rights Reserved.

Lustre Solution Performance

Sequential read 1M, 32 jobs:
 without xiRAID Opus: 44 GB/s
 with xiRAD Opus: 44 GB/s

Sequential write 1M, 32 jobs:
 without xiRAID Opus: 44 GB/s
 with xiRAD Opus: 43 GB/s

These results can be achieved
with multithreaded vhost-user-blk
only!

4 M

Random read, 32 jobs, IOps

3,5 M

3 M

2,5 M

2 M

1,5 M

0,5 M

0
1 4 16 128

1 M

IO
Depth

Lustre w/ xiRAID Opus Lustre w/o xiRAID Opus

Random write, 32 jobs, IOps
1 M

0,75 M

0,25 M

0
1 4 16 128

0,5 M

IO
Depth

47 | ©2024 SNIA. All Rights Reserved.

fio configurations 1

-name=randtest -bs=4k –ioengine=libaio –direct=1 –iodepth={1,32} –
numjobs={1,32} –norandommap –filename=/dev/vda –group_reporting -
rw={randread,randwrite} -timebased=1 –runtime=600
-name=randtest_iou -bs=4k –ioengine=io_uring –fixedbufs=1 –hipri=1 –
registerfiles=1 –direct=1 –iodepth={1,32} –numjobs={1,32} –
norandommap –filename=/dev/vda –group_reporting -
rw={randread,randwrite} -timebased=1 –runtime=600
-name=seqRW -bs={1024k, 1472k, 1536k} –ioengine=libaio –direct=1 –
iodepth={1,32} –numjobs={1,8} –offset_increment=10% –
filename=/dev/vda –group_reporting -rw={read,write} -timebased=1 –
runtime=600

48 | ©2024 SNIA. All Rights Reserved.

fio configurations 2

 -name=randtest -bs=4k –ioengine=libaio –direct=1 –iodepth={1, 8, 16, 128} –
numjobs={16} –norandommap -directory=/mount –group_reporting -
rw={randread,randwrite} -timebased=1 –runtime=600 –size=50G
 -name=seqRW -bs={1024k, 1472k, 1536k} –ioengine=libaio –direct=1 –

iodepth={1,32} –numjobs={1,8} -directory=/mount -group_reporting -
rw={read,write} -timebased=1 –runtime=600 –size=50G

49 | ©2024 SNIA. All Rights Reserved.

QSD settings

taskset -ac 32-63 qemu-storage-daemon --blockdev driver=raw,node-
name=md0,file.driver=host_device,file.filename=/dev/md0,cache.direct=o
n --export type=vduse-blk,id=md0-export,node-
name=md0,writable=on,name=vduse-0,num-queues=32,queue-size=256

taskset -ac 32-63 qemu-storage-daemon --blockdev driver=nvme,node-
name=md0,driver=nvme,device=0000:01:00.0,namespace=2 --export
type=vduse-blk,id=md0-export,node-
name=md0,writable=on,name=vduse-0,num-queues=32,queue-size=256

50 | ©2024 SNIA. All Rights Reserved.

virtiofs run parameters

taskset -ac 32-63 /usr/libexec/virtiofsd --socket-
path=/tmp/vhostqemu.sock -o source=/virtiofs/ --cache=metadata --allow-
direct-io --thread-pool-size=16 &

51 | ©2024 SNIA. All Rights Reserved.

VM run parameters 1

taskset -ca 0-31 /usr/libexec/qemu-kvm \
-enable-kvm -cpu host\
-m 32G -object memory-backend-file,id=mem,size=32G,mem-
path=/dev/shm,share=on -numa node,memdev=mem \
-chardev socket,id=char0,path=/tmp/vhostqemu.sock2 -device vhost-
user-fs-pci,queue-size=1024,chardev=char0,tag=myfs \
-smp 32 \
-hda ${VMDISK_QCOW2} \
-netdev user,id=net0,net=192.168.0.0/24,dhcpstart=192.168.0.9 \
-device virtio-net-pci,netdev=net0 -vnc 0.0.0.0:2 --nographic

52 | ©2024 SNIA. All Rights Reserved.

VM run parameters 2

taskset -a -c 0-31 /usr/local/bin/qemu-system-x86_64 \
-enable-kvm -cpu host \
-m 32G -object memory-backend-file,id=mem,size=32G,mem-path=/dev/shm,share=on -numa
node,memdev=mem \
-smp 32 \
-hda ${VMDISK_QCOW2} -drive if=none,id=drive0,cache=none,aio=native,format=raw,file=/dev/md127 \
-device '{"driver":"virtio-blk-pci","drive":"drive0","iothread-vq-
mapping":[{"iothread":"my0","vqs":[0,1]},{"iothread":"my1","vqs":[2,3]},{"iothread":"my2","vqs":[4,5]},{"iothread":"my3
","vqs":[6,7]},{"iothread":"my4","vqs":[8,9]},{"iothread":"my5","vqs":[10,11]},{"iothread":"my6","vqs":[12,13]},{"iothrea
d":"my7","vqs":[14,15]},{"iothread":"my8","vqs":[16,17]},{"iothread":"my9","vqs":[18,19]},{"iothread":"my10","vqs":[20
,21]},{"iothread":"my11","vqs":[22,23]},{"iothread":"my12","vqs":[24,25]},{"iothread":"my13","vqs":[26,27]},{"iothread"
:"my14","vqs":[28,29]},{"iothread":"my15","vqs":[30,31]}]}’ \
-netdev tap,id=net0,ifname=tap0,script=no,downscript=no -object iothread,id=my0 -object iothread,id=my1 -object
iothread,id=my2 -object iothread,id=my3 -object iothread,id=my4 -object iothread,id=my5 -object iothread,id=my6
-object iothread,id=my7 -object iothread,id=my8 -object iothread,id=my9 -object iothread,id=my10 -object
iothread,id=my11 -object iothread,id=my12 -object iothread,id=my13 -object iothread,id=my14 -object
iothread,id=my15 \-device virtio-net-pci,netdev=net0 -vnc 0.0.0.0:1

53 | ©2024 SNIA. All Rights Reserved.

VM run parameters 3

taskset -ac 0-31 /usr/local/bin/qemu-system-x86_64 \
-enable-kvm -cpu host -m 32G -smp 32 \
-m 32G -object memory-backend-file,id=mem,size=32G,mem-
path=/dev/hugepages,share=on -numa node,memdev=mem \
-hda ${VMDISK_QCOW2} \
-vnc 0.0.0.0:2 \
-device vhost-vdpa-device-pci,vhostdev=/dev/vhost-vdpa-0,queue-
size=256

54 | ©2024 SNIA. All Rights Reserved.

VM run parameters 4

taskset -a -c 0-31 /usr/libexec/qemu-kvm \
-enable-kvm -cpu host\
-m 32G -object memory-backend-file,id=mem,size=32G,mem-
path=/dev/hugepages,share=on -numa node,memdev=mem \
-smp 32 \
-hda ${VMDISK_QCOW2} -chardev socket,id=char1,path=/opt/xiraid/bin/xnr_conf/sock/r1 -
device vhost-user-blk-pci,id=blk0,chardev=char1,num-queues=32,queue-size=256 \
-netdev socket,id=net0,connect=127.0.0.1:1234 \
-device virtio-net-pci,netdev=net0 \
-netdev user,id=net1,net=192.168.0.0/24,dhcpstart=192.168.0.9 \
-device virtio-net-pci,netdev=net1 \
-vnc 0.0.0.0:4 --nographic

	High-Performance Block Volumes in Virtual Cloud Environment
	AI workloads in Cloud environments have a performance challenge
	Problem: SDS performance with AI workloads in the Cloud
	Slow Storage Means GPU Underutilization
	Our Goals
	xiRAID Opus: optimal solution for block device in Cloud environments
	xiRAID Opus (Optimized Performance in User Space)
	xiRAID Opus Architecture
	Most efficient method of block device delivery in virtualized environments.
	Methods for delivery of block device to VMs
	Comparing the technologies
	Passing shared block volume to 1 VM - Random read
	Passing shared block volume to 1 VM - Sequential write
	Passing shared block volume: Methods Comparison
	Why we chose vhost-usr-blk = Conclusions
	How xiRAID Opus accelerates parallel file systems in cloud environments
	Architectures that we are working on
	Xinnor Lustre Solution for Cloud Environments
	Lustre in Cloud Environments
	Testing Environment Details��
	Lustre Solution Performance
	Reducing complexity of Lustre administration
	Virtio FS Upsides = simplicity
	Xinnor Tuned Virtio FS = performance results
	Outcomes = Xinnor Lustre Solution can perform
	Our vision of the future: pNFS
	pNFS Block Layout
	pNFS Architecture in Cloud Environments
	pNFS with and without xiRAID Opus
	pNFS vs Lustre - accelerated by Xinnor solutions
	pNFS in Cloud Environments - Conclusions
	Conclusions
	Xinnor has solutions for AI in Cloud Environments
	Backup
	Backup
	Backup
	VirtioFS requires additional CPU cores for each VM
	Outcomes of VirtioFS addition to Lustre
	vhost-usr-blk
	VDUSE: a software-defined datapath for virtio
	VirtIO - True multi-threading in QEMU 9
	VirtIO - True multi-threading in QEMU 9
	Vhost-usr-blk Opus vs SPDK vs QSD implemetations
	VIRTIO vs IO_URING PT
	vDUSE, mdraid vs sigle drive vfio_pci
	Lustre Solution Performance
	fio configurations 1
	fio configurations 2
	QSD settings
	virtiofs run parameters
	VM run parameters 1
	VM run parameters 2
	VM run parameters 3
	VM run parameters 4

