
LANL’s Journey Toward
Computational Storage

Computational Storage For Simulation Science
03/2024

Gary Grider
HPC Division Leader

Los Alamos National Laboratory

LA-UR-24-22150

Computational Storage Why?
Data Gravity is an Important Consideration
• Need flexibility in where computation is done (host, network, device) as

economics will change over time
• Its not just energy and time to insight, some of these analytics require the same

size analytics footprint as the simulation footprint (petabyte of ram) making
analytics not always as feasible
• Data Agnostic Offloads

• Server memory BW does not allow many passes over streaming data
• Data Aware Offloads

• Analytics is often multiple orders of magnitude less reading than writing
• You just have a hard time finding what you are looking for (filter/index/histogram/etc.)
• Can we add metadata/indexing/ordering to data as it is written with almost no overhead

and reap huge wins on read (time, hdwr resources, energy)
• For Science

• Particle methods -> “Ordered” row-based analytics (KV)
• Grid methods -> columnar-based analytics
• Large Complex Grid methods -> THE KITCHEN SINK

Data Agnostic Offload (ABOF)
Offload erasure, encoding, compression and make it possible to run each
anywhere you like (host, network/DPU, storage/CSA/CSP/CSD)

Consumable:
• Open ZFS

• Kernel module for offloads to register into
• ZFS mods unstreamed

• Tested under Lustre
• Data written is same, upon failure just fall back to host
• No app changes other than faster on less capable host

§ Not a block interface, a programming interface
§ Remote malloc, copy, operate on …

Great partnership

Analytics
Under Erasure
CSHDD

Data Aware Row And Col Based Analytics
Offload Trials

Row (Point methods in Science)
• Early KV-CSD work was hashed based but many KV workloads require “order from chaos”
• Leverage LANL/CMU (DeltaFS (Best Student Paper SC19) trace 1K particles in 1T moving in

1 M cells based on LSM/Rocks
• WHY KV-CS: Performance/Energy win. Few sstables have filter matches but also very few

records needed per sstable
• Consumable: (Pretty consumable)

• User facing Rocks API
• Extension to SNIA NVME-KV interface
• Could be accelerator under Rocks

Columnar (Grid methods in Science)
• Leverage

• Apache ecosystem columnar technology (Parquet/etc.)
• LANL ZFS knowledge what blocks are part of a parquet file and DuckDB

• Why CSHDD: Performance/Energy win. Many row groups selected (due to AMR) but big
variety of number of records needed from those row groups

• Consumable: (Not very consumable - due to inside filesystem implementation)
• Special knowledge of ZFS file/erasure, something of a layer violation

• Tiny proc/mem performed simple reduction slightly faster than host
• With many drives behind host, scaling beats host by itself (frees host)

CS data agnostic/data aware learnings
• CSA/CSP’s: multi-device/big resource ops (erasure, compression, pipelined functions, etc.)
• CSD’s: single-device ops, wins on reductions (requires analytics friendly stripe/erasure)
• Consumption models and broader use cases matter

• Accelerate under popular server apps: Rocks (rows) / Object Servers (cols) (select on cols/rows)
• Leveraging apache ecosystems seems wise
• Consumers of large scale data live on one of two basic camps

• Don’t know what you are looking for, want a compact representation (ML training/AI)
• Know what you are looking for, finding is difficult (due to data size and/or complexity)

• this is the most obvious place where CS helps and can be implemented in mostly north-
south communication patterns

• File systems can be a bit heavy for devices and blocks are useless, perhaps Object is the compromise ,
with erasure analytics chunks intact on single devices

• At rest compression/erasure seems doable but encryption will be interesting

Substrait

Why Columnar and why Offload to near Storage?

• 1 PB file per time step contains all the state (for restart) (think 1 PB) (and thousands of time step)
• Each cell has 10-100 state variables (64float) (temp, pressure, energy, momentum, differentials (for gradients)…)
• In 3D – applications view this as 10-100 distributed arrays (COLUMNS), serialize in Hilbert space filling curve order

Time Steps 1 2 3 4 5 6

1 2
3 4 5

1
6
1

CB

7 8 9 A

Processes have
roughly same
number of cells for
comp/mem balance
but must shuffle
cells for AMR

Find outer edge of eddy’s (light blue and yellow). Can light weight indexing near storage yield nnnX less data?

Single process
Hilbert order

• If you need all row groups, or all rows of groups, or
all columns of groups – why offload?

• We don’t
• Reduce trivially by excluding entire row groups
• Need entire row group (all rows (subset of

column)s
• Need only some rows of the row group

Its never
that
simple

Multi-dimensional Unstructured Adaptive Meshes (grid methods) use distributed arrays/columns

Many selected row groups will yield only some rows and most queries will exclude many columns

A Columnar end-to-end demo with Object CS
Offloads

S3 plus RPC pushdown service (more
complex SQL and Query over more than
one object (bucket/objects list))

Open Src object server with S3 + RPC
pushdown, use OCS backend

SSD SSD

OCSD OCSD

OCS api/OCS on NVME

DEMO Stack

OCSACourtesy Voltron Data

ODBC JDBCADBC Custom Connector…

• Object enables same view of “analytic chunk” everywhere
(App, obj server, CSA and CSD. (object not block!)

• Object Future proofs CS: if CXL becomes how to address smart storage, offload will be based on
memory objects, and if file everywhere ever wins, files and objects are close cousins.

• Assists with reality that economics will insist on north/south bw devices

LANL use case (high level)
• LANL grid-based AMR columnar to

Parquet
• Overall data in Hilbert order
• One to multiple variable query across

many objects or parts

S3 and New Pushdown Service

Versity Open Src object server that can write to OCSs
With/without Analytics Friendly Erasure or Compression. (future work)?

OCSD

SSD

OCSD

OCS api/OCS on NVME

LANL simulation app writes either individual parquet
row group objects into bucket
Or a multi-part object where each part is a parquet
row group (applications must obey this rule)
Application can write any of supported types (Parquet,
JSON, CSV, SST) (likely Parquet and maybe SST)

OCSD

SSD

LANL custom analytics
app

W
rit

e

Q
ue

ry

Potential Erasure/compression

OCSA

ODBC JDBCADBC Custom Connector…

OCS Initiators/Targets Open Ecosystem Demonstration(s)

SPDK target

S3 Access Method

Presto

Object Server (Get, Put,
List, (uses REST protocol
up and OCS SPDK down)

NB CSA device

SPDK initiator (Get, Put, List)

Pushdown GRPC
services Query

results

Initiator test vehicle
(uses OCS SPDK

down)

AirMettle

NeuroBladeSK Hynix OCSV1+ push
down target

Pushdown GRPC client

OCS (A/D) target test
vehicle

Object files (in a file system on the OCSA/OCSD system available to all via NFS)

Versity

TCP/IP

NVME/NVMEoF

File Access Method

Hive
map
schema

Pushdow
n GRPC

test clientModified Hive Connector

SPDK target SPDK target

select

Toward
Pushdow
n GRPC
accepted
method

Toward
OCS
NVME

AirMettle
Analytics

SK hynix / LANL

Simulatio
n files via
NFS

S3
client

Open Source Proprietary

Value
add

What if you don’t want/need objects and you want to
do this analytics reduction pushdown using files?
• Concept is to use NFS as the mechanism to write the data, read

the data, pass the query, and read the results.
• Want to enable use with pNFS to make this all parallel in a totally

standards compliant way using NFS/pNFS and Posix security etc.
• Want it to be efficient especially on write and read (indexing

mostly done on HPC clients during write not slowing down the
data dump time)
• Can be slightly more inefficient on query because the concept is

to retrieve many times/orders of magnitude less data than the
total data set.

NFS File Query Pushdown

NFS client (actions run by user)
 mounted /data and

/pushdown from NFSv3 Server

NFS RDMA/Multi-stream

NFS V3 Server

/data export /pushdown
export

Fuse Daemon
Operates as
client user

XFS FS
3

1 2 4 5

NFS Pushdown Access
Method

PrestoHive map
schema
(table to
files)

Modified Hive Connect
0

Mkdir /data/d1
1 mkdir to data server
2 response

Write /data/d1/parq1
1 create/write to data server
2 responses

Read /data/d1/parq1
1 read to data server
2 results stream on handle
2 responses

Prep for analytics /data/d1
1 readdir to data server
2 results stream on handle
2 responses
6 load hive table to file map
 and schema

6

Query
0 read table to files from hive
4 open /pushdown/specialfile
4 Write pushdown to handle
 (query on files from hive list)
3 Fuse (as user) reads files locally (but
through 5 query results stream on handle
5 responses

Parallel NFS File Query Pushdown

NFS client (actions run by user)
 mounted /data and

/pushdown1 from NFSv3 Server

NFS RDMA/Multi-stream

NFS V3 Server

/dat1 export /pushdown1
export

Fuse Daemon
Operates as
client user

XFS FS
3

1 2 4 5

NFS Pushdown Access
Method

PrestoHive map
schema
(table to
files)

Modified Hive Connect
0

Mkdir /data/d1
7 mkdir to MD server
8 response Write /data/d1/parq1 to parqN

7 create to MD server 8 response
1 write data to data server directed by map from md server
 (MDS will spread files to different data servers (no in file
striping)
2 responses

Read /data/d1/parq1
7 open to MD server 8 response
1 read to data server (via map)
2 results stream on handle
2 responses

Prep for analytics /data/d1
7 readdir to MD server
8 results stream on handle
8 responses
6 load hive table to file map and schema
(include map location data server 1-N)

6

Query
0 read table to files from hive
4 open all /pushdownN/specialfile(s)
4 Write pushdown to handle(s)
 (query on files from hive list) to each
data server where there are files from hive
3 Fuse reads files locally (but through 4.2
local copy read so it an happen as user)
5 query results stream on handle from each
5 responses from each

NFS client (actions run by user)
 mounted /data and

/pushdownN from NFSv3 Server

NFS V3 Server

/datN export /pushdowN
export

Fuse Daemon
Operates as
client user

XFS FS
3

1 2 4 5

NFS Pushdown Access
Method

PrestoHive map
schema
(table to
files)

Modified Hive Connect
0

6

NFS 4.2
PNFS MD
Server

7
8 8 7

NFS/PNFS Pushdown seems relatively simple to demo
• NFS4.2 server will give you the map and you can figure out the data server where

the file is
• NFS4.2 PNFS server will spread the files out over data servers
• FUSE daemon can be written to accept open of “special files” which interact

with fuse to accept pushdown and return answers/results in the normal nfs
read/write handle)
• FUSE daemon could have access to the files locally but would use nfs4.2 to read

the file with the local bypass so that this can honor user/grp permissions
• Fuse daemon is really not much different than the gprc server code only there is

no need for buffering and all that, as its all handled in the nfs file handle but the
pushdown and results in arrow is all the same. The SK hynix demo of pushdown
code could easily be modified to be the fuse daemon
• Fuse performance might not be perfect but the expectation is that the Fuse

daemon will be reading a lot more data from the local files than sending to the
client (reduction)

Partnering has been the key to this
exploration!

Thanks for your
time!

